DOI QR코드

DOI QR Code

INTERVAL-VALUED SMOOTH TOPOLOGICAL SPACES

  • Received : 2010.06.08
  • Accepted : 2010.11.22
  • Published : 2010.12.25

Abstract

We list two kinds of gradation of openness and we study in the sense of the followings: (i) We give the definition of IVGO of fuzzy sets and obtain some basic results. (ii) We give the definition of interval-valued gradation of clopeness and obtain some properties. (iii) We give the definition of a subspace of an interval-valued smooth topological space and obtain some properties. (iv) We investigate some properties of gradation preserving (in short, IVGP) mappings.

Keywords

t-norm;interval-valued gradation of openness (resp. closedness and clopenness);interval-valued preserving mapping

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1) (1986) 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  2. K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61(2)(1993) 131-142.
  3. K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31(3)(1989) 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  4. P. Burillo and H. Bustince, Two operators on interval-valued intu- itionistic fuzzy sets: Part II, C.R. Acad. Bulg. Sci. 48(1)(1995) 17-20.
  5. H. Bustince and P. Burillo, Correlation of interval-valued intuition- istic fuzzy sets, Fuzzy Sets and Systems 74(1995) 237-244. https://doi.org/10.1016/0165-0114(94)00343-6
  6. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968) 182-190. https://doi.org/10.1016/0022-247X(68)90057-7
  7. K.C. Chattopadhyay, R.N. Hazra and S.K. Samanta, Gradation of openness:fuzzy topology, Fuzzy Sets and Systems 49(1992) 237-242. https://doi.org/10.1016/0165-0114(92)90329-3
  8. D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997) 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0
  9. V. Gregori and A.Vidal, Gradation of openness and Chang's fuzzy topologies, Fuzzy Sets and systems 109(2000) 233-244. https://doi.org/10.1016/S0165-0114(98)00089-X
  10. R.N. Hazra and S.K. Samanta, K.C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45(1992)79-82. https://doi.org/10.1016/0165-0114(92)90093-J
  11. K.Hur, Y.B.Kim and J.H.Ryou, Intuitionistic fuzzy topological groups, Honam Math. J. 26(2)(2004) 163-192.
  12. K.Hur, J.H.Kim and J.H.Ryou, Intuitionistic fuzzy topological spaces, J.Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 11(3)(2004) 243- 265.
  13. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976), 621-623. https://doi.org/10.1016/0022-247X(76)90029-9
  14. T.K.Modal and S.K.Samanta, On intuitionistic gradation of open- ness, Fuzzy Sets and Systems 131(2002) 323-336. https://doi.org/10.1016/S0165-0114(01)00235-4
  15. S.K. Samanta and T.K. Mondal, Intuitionistic gradation of open- ness: intuitionistic fuzzy topology, Busefal 73(1997) 8-17.
  16. S.K. Samanta and T.K. Mondal, Topology of interval-valued fuzzy sets, Indian J. Pure Appl. Math. 30(1)(1999) 23-38.
  17. S.K. Samanta and T.K. Mondal, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119(2001) 483-494. https://doi.org/10.1016/S0165-0114(98)00436-9
  18. A. Sostak, On a fuzzy topological structure, Rend. Circ. Mat. Palermo:Suppl. Ser. II(1985) 89-103.
  19. L.A. Zadeh, Fuzzy sets, Inform. and Control 8(1965) 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  20. L.A. Zadeh, The concept of a linguistic variable and its application to approx- imate reasoning I, Inform. Sci. 8(1975) 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. Interval-Valued Fuzzy Ideals of a Ring vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.198
  2. INTERVAL-VALUED FUZZY GROUP CONGRUENCES vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.403
  3. THE LATTICE OF INTERVAL-VALUED FUZZY IDEALS OF A RING vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.351
  4. Interval-Valued Fuzzy Cosets vol.22, pp.5, 2012, https://doi.org/10.5391/JKIIS.2012.22.5.646
  5. Interval-valued Fuzzy Quasi-ideals in a Semigroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.215
  6. INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.525
  7. ON INTERVAL-VALUED FUZZY LATTICES vol.37, pp.2, 2015, https://doi.org/10.5831/HMJ.2015.37.2.187
  8. Interval-Valued Fuzzy Congruences on a Semigroup vol.13, pp.3, 2013, https://doi.org/10.5391/IJFIS.2013.13.3.231
  9. Lattices of Interval-Valued Fuzzy Subgroups vol.14, pp.2, 2014, https://doi.org/10.5391/IJFIS.2014.14.2.154
  10. Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.29
  11. INTERVAL-VALUED FUZZY GENERALIZED BI-IDEALS OF A SEMIGROUP vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.603
  12. INTERVAL-VALUED FUZZY SUBGROUPS vol.35, pp.4, 2013, https://doi.org/10.5831/HMJ.2013.35.4.565
  13. Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup vol.11, pp.4, 2011, https://doi.org/10.5391/IJFIS.2011.11.4.259
  14. Interval-valued Fuzzy Normal Subgroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.205
  15. INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.499