DOI QR코드

DOI QR Code

PEBBLING EXPONENTS OF PATHS

Kim, Ju-Young;Kim, Sun-Ah

  • 투고 : 2010.11.19
  • 심사 : 2010.12.11
  • 발행 : 2010.12.25

초록

A pebbling move on a connected graph G is taking two pebbles off of one vertex and placing one of them on an adjacent vertex. For a connected graph G, $G^p$ (p > 1) is the graph obtained from G by adding the edges (u, v) to G whenever 2 $\leq$ dist(u, v) $\leq$ p in G. And the pebbling exponent of a graph G to be the least power of p such that the pebbling number of $G^p$ is equal to the number of vertices of G. We compute the pebbling number of fourth power of paths so that the pebbling exponents of some paths are calculated.

키워드

exponent;path;pebbling

참고문헌

  1. F.R.K.Chung, Pebbling in hypercubes, SIAM J. Disc. Math. Vol.2, No. 4(1989), pp 467-472. https://doi.org/10.1137/0402041
  2. D. Duffus and I. Rival, Graphs orientalbe as distributive lattices, Proc. Amer. Math. Soc. 88(1983), pp 197-200. https://doi.org/10.1090/S0002-9939-1983-0695239-4
  3. P. Lemke and D. Kleitman, An additional theorem on the intergers modulo n, J. Number Theory 31(1989), pp 335-345. https://doi.org/10.1016/0022-314X(89)90077-2
  4. D. Moews, Pebbling graphs, J. of combinatorial Theory(Series B) 55(1992), pp 224-252.
  5. H.S.Snevily and J. Foster. The 2-pebbling property and a Conjecture of Gra- ham's, preprint.
  6. L. Pachter, H.S.Snevily and B. Voxman, On pebbling graphs, Congr Number, 107(1995), pp 65-80.
  7. Ju Young Kim, Pebbling exponents of graphs, J. of Natural Sciences In Catholic Univ. of Daegu, Vol.2, No. 1(2004), pp 1-7.