Study on Digital Holography with Conjugated Hologram

복소공액 홀로그램을 이용한 디지털 홀로그래피 연구

  • Received : 2010.05.04
  • Accepted : 2010.07.27
  • Published : 2010.08.25


In this paper we have applied phase conjugated holographyto DHM (digital holography microscopy) to remove phase aberration and noise. Generally,digital holographyincludes the phase information of the object, phase aberration terms introduced by the measurement system and noise terms (DC term and twin images). These aberrations and noise terms decrease the quality of the reconstructed phase image. We could obtain a conjugated hologram which includes only phase information of object. Experimentally we show that distortion of image and aberration of phase in a measurement system are removed using the conjugation hologram.


Supported by : 산업자원부


  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavski, “Reconstruction of hologram with a computer,” Sov. Phys. Tech. 17, 434-444 (1972).
  3. G. K. Wernicke, O. Kruschke, N. Demoli, and H. Gruber, “Investigation of micro-opto-electro-mechanical components with a holographic microscopic interferometer,” Proc. SPIE 3396, 238-243 (1998).
  4. L. Xu, X. Peng, J. Miao, and K. Asundi, “Studies of digital microscopic with application to microstructure testing,” Appl. Opt. 40, 5046-5051 (2001).
  5. H. Cho, D. Kim, Y. Yu, W. Jung, and S. Shin, “3-dimensional measurement using digital holographic microscope and phase unwrapping,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 17, 329-334 (2006).
  6. S. Kim, H. Lee, and J. Son, “Recording of larger object by using two confocal lenses in digital holography,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 14, 244-248 (2003).
  7. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A11, 2011-2015 (1994).
  8. C. Wagneer, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999).
  9. Y. Takaki and H. Ohzu, “Fast numerical reconstruction technique for high resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204-2055 (1999).
  10. L. Xu, J. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214-3219 (1999).
  11. T. Colomb, E. Cuche, F. Charriere, J. Kuhn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
  12. E. Cuche, P. Marquet, C. Depeursinge, “Simultaneous amplitude and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
  13. T. Colomb, J. Kuhn, F. Charriere, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4304 (2006).
  14. H. Cho, W. Jang, J. Shon, D. Kim, S. Shin, and Y. Yu, “Twin-image elimination in an in-line digital holographic microscope,” J. Korean Phys. Soc. 52, 1031-1035 (2008).
  15. H. Cho, J. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Technology 41, 741-745 (2009)

Cited by

  1. Study on Error Reduction in Dual Wavelength Digital Holography Using Modified Fine Map vol.22, pp.3, 2011,
  2. Study on Digital Holography with Self-Reference Hologram vol.22, pp.5, 2011,
  3. Dual-wavelength Digital Holography Microscope for BGA Measurement Using Partial Coherence Sources vol.15, pp.4, 2011,