DOI QR코드

DOI QR Code

Optical Current Sensors Based on Polarization Rotated Reflection Interferometry

편광회전 반사간섭계를 이용한 광전류센서

  • Jang, Ji-Hyang (School of Electrical Engineering, Pusan National University) ;
  • Chu, Woo-Sung (School of Electrical Engineering, Pusan National University) ;
  • Kim, Hoon (School of Electrical Engineering, Pusan National University) ;
  • Seo, Jun-Kyu (School of Electrical Engineering, Pusan National University) ;
  • Kim, Kyung-Jo (School of Electrical Engineering, Pusan National University) ;
  • Kim, Jun-Whee (School of Electrical Engineering, Pusan National University) ;
  • Oh, Min-Cheol (School of Electrical Engineering, Pusan National University)
  • Received : 2010.05.03
  • Accepted : 2010.07.22
  • Published : 2010.08.25

Abstract

Fiber optic current sensors based on polarization-rotated reflection interferometry are demonstrated by incorporating them into polymeric optical waveguide components, including polarization-maintaining 3-dB couplers, TE-pass waveguide polarizers, and thermooptic phase modulators. To remove the bending induced birefringence, optical fiber coil is annealed at $850^{\circ}C$ for 24 hours. The reflection interferometry comprising polymer waveguide devices exhibit a highly stable output signal corresponding to the flowing current.

Acknowledgement

Supported by : 부산대학교

References

  1. A. M. Smith, “Polarization and megnetooptic properties of single-mode optical fiber,” Appl. Opt. 17, 52-56 (1978). https://doi.org/10.1364/AO.17.000052
  2. A. Papp and H. Harms, “Magnetooptic current transformer. 1: principles,” Appl. Opt. 19, 3729-3734 (1980). https://doi.org/10.1364/AO.19.003729
  3. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” IEEE J. Lightwave Technol. 20, 267-276 (2002). https://doi.org/10.1109/50.983241
  4. Klaus Bohnert and Oberrohrdorf, “Fiber-optic current sensor,” U.S. Patent 7,075,286 B2 (2006).
  5. J. D. P. Hrabliuk, “Optical current sensors eliminate CT saturation,” in Proc. 2002 IEEE PES Winter Meeting (New York, USA, Jan. 2002), pp. 1478-1481.
  6. M. Hino, S. Hase, K. Ajiki, and M. Akagi, “Optical fiber current transformer applications on railway electric power supply systems,” QR of RTRI 45, 59-63 (2004). https://doi.org/10.2219/rtriqr.45.59
  7. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” IEEE J. Lightwave Technol. 25, 3602-3609 (2007). https://doi.org/10.1109/JLT.2007.906795
  8. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Optics and Lasers in Engineering 43, 511-526 (2005). https://doi.org/10.1016/j.optlaseng.2004.02.008
  9. H. A. Schafft, “Thermal analysis of electromigration test structure,” IEEE Trans. Electron Dev. ED-34, 664-672 (1987).
  10. A. H. Rose, S. M. Etzel, and C. M. Wang, “Verdet constant dispersion in annealed optical fiber current sensors,” IEEE J. Lightwave Technol. 15, 803-807 (1997). https://doi.org/10.1109/50.580818