감광제 광산화에 의한 Bisphenol A 안정성 감소

Decreased Stability of Bisphenol A by Photosensitization

  • 박찬억 (서울산업대학교 식품공학과) ;
  • 이재환 (서울산업대학교 식품공학과)
  • Park, Chan-Uk (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Technology)
  • 투고 : 2009.11.04
  • 심사 : 2009.12.19
  • 발행 : 2010.06.30

초록

내분비교란물질인 BPA는 식품의 포장용기나 젖병 등의 제조에 이용되며, 라이보플라빈 광산화에 의해 안정성이 감소하는 것으로 보고된 바 있다. 본 연구에서는 광산화 시 메틸렌블루, 로즈벵갈, 라이보플라빈, 또는 이산화티타늄 등의 감광제 종류에 따른 BPA안정성을 비교하였고, sodium azide($NaN_3$) 농도에 따른 BPA안정성을 확인하였다. BPA 농도는 라이보플라빈, 로즈벵갈, 메틸렌블루 순서로 유의적으로 감소하였지만(p<0.05), 이산화티타늄 첨가 시료와 대조구인 감광제 무첨가군의 BPA 농도는 유의적인 차이가 없었다(p>0.05). BPA의 안정성은 메틸렌블루 농도 의존적으로 감소하였으며, $NaN_3$ 농도가 증가할수록 BPA 안정성은 증가하였다. 이는 메틸렌블루 광산화에 의한 BPA농도 감소에 일중항산소가 관여함을 의미한다.

참고문헌

  1. Ballesteros-Gomez A, Rubio S, Perez-Bendito D. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 1216: 449-469 (2009) https://doi.org/10.1016/j.chroma.2008.06.037
  2. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24: 139-177 (2007) https://doi.org/10.1016/j.reprotox.2007.07.010
  3. Bergeron RM, Thompson TB, Leonard LS, Pluta L, Gaido KW. Estrogenicity of bisphenol A in a human endometrial carcinoma cell line. Mol. Cell. Endocrinol. 150: 179-187(1999) https://doi.org/10.1016/S0303-7207(98)00202-0
  4. Kaneko M, Okada R, Yamamoto K, Nakamura M, Mosconi G, Polzonetti-Magni AM, Kikuyama S. Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen. Comp. Endocr. 155: 574-580 (2008) https://doi.org/10.1016/j.ygcen.2007.09.009
  5. Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM, Prins GS. An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod. Toxicol. 24: 240-252 (2007) https://doi.org/10.1016/j.reprotox.2007.06.008
  6. Lin Y, Shi Y, Jiang M, Jin Y, Peng Y, Lu B, Dai K. Removal of phenolic estrogen pollutants from different sources of water using molecularly imprinted polymeric microspheres. Environ. Pollut. 153: 483-491 (2008) https://doi.org/10.1016/j.envpol.2007.08.001
  7. Ioan I, Wilson S, Lundanes E, Neculai A. Comparison of Fenton and sono-Fenton bisphenol A degradation. J. Hazard. Mater. 142: 559-563 (2007) https://doi.org/10.1016/j.jhazmat.2006.08.015
  8. Zhan M, Yang X, Xian Q, Kong L. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere 63: 378-386 (2006) https://doi.org/10.1016/j.chemosphere.2005.08.046
  9. Xie YB, Li XZ. Degradation of bisphenol A in aqueous solution by $H_{2}O_{2}$-assisted photoelectrocatalytic oxidation. J. Hazard. Mater. 138: 526-533 (2006) https://doi.org/10.1016/j.jhazmat.2006.05.074
  10. Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K. Degradation of bisphenol A in water by the photo-Fenton reaction. J. Photoch. Photobio. A 162: 297-305 (2004) https://doi.org/10.1016/S1010-6030(03)00374-5
  11. Ha DO, Jeong MK, Park CU, Park MH, Chang PS, Lee JH. Effect of riboflavin photosensitization on the degradation of bisphenol A (BPA) in model and real-food systems. J. Food Sci. 74: 380-384 (2009) https://doi.org/10.1111/j.1750-3841.2009.01172.x
  12. Foote CS, Denny RW. Chemistry of singlet oxygen quenching by $\beta$-carotene. J. Am. Chem. Soc. 90: 6232-6238 (1968) https://doi.org/10.1021/ja01024a060
  13. Boff JM, Min DB. Chemistry and reaction of singlet oxygen in foods. Compr. Rev. Food Sci. F. 1: 58-72. (2002) https://doi.org/10.1111/j.1541-4337.2002.tb00007.x
  14. King JM, Min DB. Riboflavin photosensitized singlet oxygen oxidation of vitamin D. J. Food Sci. 63: 31-34 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15669.x
  15. Skibsted LH. Light-induced changes in dairy products. Bull. Int. Dairy Fed. 346: 4-9 (2000)
  16. Diaz M, Luiz M, Alegretti P, Furlong J, Amat-Guerri F, Massad W, Criado S, Garci NA. Visible-light-mediated photodegradation of 17$\beta$-estradiol: Kinetics, mechanism and photoproducts. J. Photoch. Photobio. A 202: 221-227 (2009) https://doi.org/10.1016/j.jphotochem.2008.12.008
  17. Fischer BB, Krieger-Liszkay A, Eggen RIL. Oxidative stress induced by the photosensitizers neutral red (type I) or rose bengal (type II) in the light causes different molecular responses in Chlamydomonas reinhardtii. Plant Sci. 168: 747-759 (2005) https://doi.org/10.1016/j.plantsci.2004.10.008
  18. Kim JI, Lee JH, Choi DS, Won BM, Jung MY, Park JY. Kinetic study of the quenching reaction of singlet oxygen by common synthetic antioxidants (tert-butylhydroxyanisol, tert-di-butylhydroxytoluene, and tert-butylhydroquinone) as compared with $\alpha$-tocopherol. J. Food Sci. 74: 362-369 (2009)
  19. Lee JM, Chang PS, Lee JH. Effects of photosensitisation and autoxidation on the changes of volatile compounds and headspace oxygen in elaidic trans fatty acid and oleic cis fatty acid. Food Chem. 119: 88-94 (2010) https://doi.org/10.1016/j.foodchem.2009.05.077
  20. Oh YS, Jang ES, Bock JY, Yoon SH, Jung MY. Singlet oxygen quenching activities of various fruit and vegetable juices and protective effects of apple and pear juices against hematolysis and protein oxidation induced by methylene blue photosensitization. J. Food Sci. 71: 260-268 (2006) https://doi.org/10.1111/j.1750-3841.2006.00014.x
  21. Chang HS, Kim JE, Chung DJ, Lee JS, Choi CB, Kim HY. The antibacterial effect of photo-catalytic titanium dioxide on canine skin. Korean J. Vet. Res. 46: 279-284 (2006)
  22. Kim HY, Yang WH. Development of wastewater treatment system by energy-saving photocatalyst using combination of solar light, UV lamp and $TiO_{2}$. Kor. J. Env. Health 29: 51-61 (2003)
  23. Barbieri Y, Massad WA, Diaz DJ, Sanz J, Amat-Guerri F, García NA. Photodegradation of bisphenol A and related compounds under natural-like conditions in the presence of riboflavin:Kinetics, mechanism, and photoproducts. Chemosphere 73: 564-571 (2008) https://doi.org/10.1016/j.chemosphere.2008.06.013
  24. Lee JH, Min DB. Changes of headspace volatiles in milk with riboflavin photosensitization. J. Food Sci. 74: C563-568 (2009) https://doi.org/10.1111/j.1750-3841.2009.01295.x
  25. Yang SO, Lee SW, Chung J, Lee JH. Stability of isoflavone daidzein and genistein in riboflavin, chlorophyll b, or methylene blue photosensitization. J. Food Sci. 73: 100-105 (2008)
  26. Lee SW, Chang PS, Lee JH. Effects of riboflavin photosensitization on the changes of isoflavones in soymilk. J. Food Sci. 73: 551-555 (2008) https://doi.org/10.1111/j.1750-3841.2008.00881.x
  27. Yang SO, Lee JM, Lee JC, Lee JH. Effects of riboflavin-photosensitization on the formation of volatiles in linoleic acid model systems with sodium azide or $D_{2}O$. Food Chem. 105: 1375-1381 (2007) https://doi.org/10.1016/j.foodchem.2007.05.002
  28. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coordin. Chem. Rev. 233-234: 351-371 (2002) https://doi.org/10.1016/S0010-8545(02)00034-6
  29. Imai S, Shiraishi A, Gamo K, Watanabe I, Okuhata H, Miyasaka H, Ikeda K, Bamba T, Hirata K. Removal of phenolic endocrine disruptors by Portulaca oleracea. J. Biosci. Bioeng. 103: 420-426 (2007) https://doi.org/10.1263/jbb.103.420