DOI QR코드

DOI QR Code

SEOUL NATIONAL UNIVERSITY 4K×4K CAMERA (SNUCAM) FOR MAIDANAK OBSERVATORY

  • Im, Myung-Shin (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Ko, Jong-Wan (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Cho, Yun-Seok (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Choi, Chang-Su (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Jeon, Yi-Seul (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Lee, In-Duk (Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University) ;
  • Ibrahimov, Mansur (Ulugh Beg Astronomical Institute)
  • Received : 2010.04.30
  • Accepted : 2010.05.22
  • Published : 2010.06.30

Abstract

We present the characteristics of the Seoul National University 4k Camera (SNUCAM) and report its performance on the 1.5m telescope at the Maidanak observatory in Uzbekistan. SNUCAM is a CCD camera with a pixel scale of 0.266" in $4096{\times}4096$ format, covering $18.1'{\times}18.1'$ field of view on the 1.5m. The camera is currently equipped with Bessell UBVRI, $H{\alpha}$, SDSS ugriz, and Y-band filters, allowing us to carry out a variety of scientific programs ranging from exoplanet studies to survey of quasars at high redshift. We examine properties of SNUCAM such as the bias level and its temporal variation, the dark current, the readout noise, the gain, the linearity, the fringe patterns, the amplifier bias, and the bad pixels. From our observations, we also constructed the master fringe frames in I-, z-, and Y-band. We outline some of the current scientific programs being carried out with SNUCAM, and demonstrate that SNUCAM on the 1.5m can deliver excellent images that reach to the $5-{\sigma}$ detection limits of R~25.5 mag and z~22.7 mag in 1 hour total integration.

Keywords

instrumentation: ccd camera

References

  1. Abazajian et al. 2009, The Seventh Data Release of the Sloan Digital Sky Survey, ApJS, 182, 543 https://doi.org/10.1088/0067-0049/182/2/543
  2. Choi, C., Im, M., et al. 2010, Y-band Imaging of Extragalactic Fields, JKAS, to be submitted
  3. Darnley, M. J., et al. 2007, The Angstrom Project Alert System: Real-Time Detection of Extragalactic Microlensing, ApJ, 661, L45 https://doi.org/10.1086/518600
  4. Ehgamberdiev, S. A., Baijumanov, A. K., Ilyasov, S. P., Sarazin, M., Tillayev, Y. A., Tokovinin, A. A., & Ziad, A. 2000, The Astroclimate of Maidanak Observatory in Uzbekistan, A&ASS, 145, 293 https://doi.org/10.1051/aas:2000244
  5. Frieman, J. A., et al. 2008, The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary, AJ, 135, 338 https://doi.org/10.1088/0004-6256/135/1/338
  6. Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, The Sloan Digital Sky Survey Photometric System, AJ, 111, 1748 https://doi.org/10.1086/117915
  7. Howell, S. B. 2006, Handbook of CCD Astronomy 2nd edition, Cambridge University Press
  8. Hwang, N., et al. 2007, An Optical Source Catalog of the North Ecliptic Pole Region, AJS, 172, 583 https://doi.org/10.1086/519216
  9. Im, M., Lee, I., Cho, Y., Choi, C., Ko, J., & Song, M. 2007, Seoul National University Bright Quasar Survey in Optical (SNUQSO). II. Discovery of 40 Bright Quasars Near the Galactic Plane, ApJ, 664, 64 https://doi.org/10.1086/518734
  10. Jeon, Y., et al. 2010, Optical Images and Source Catalog of the AKARI NEP- Wide Survey Field, ApJS, submitted
  11. Kim, D., et al. 2007, Detection of M31 Binaries via High-Cadence Pixel-lensing Surveys, ApJ, 666, 236 https://doi.org/10.1086/519919
  12. Ko, J., & Im, M. 2005, Optical-Near Infrared Color Gradients of Elliptical Galaxies and Their Environmental Dependence, JKAS, 28, 149 https://doi.org/10.5303/JKAS.2005.38.2.149
  13. Landolt, A. U. 1992, UBVRI Photometric Standard Stars in the Magnitude Range 11.5-16.0 around the Celestial Equator, AJ, 104, 372 https://doi.org/10.1086/116243
  14. Landolt, A. U. 1983, UBVRI Photometric Standard Stars around the Celestial Equator, AJ, 88, 439 https://doi.org/10.1086/113329
  15. Lim, B., Sung, H., Bessell, M. S., Karimov, R., & Ibrahimov, M. 2009, CCD Photometry of Standard Stars at Maidanak Astronomical Observatory in Uzbekstan: Transformations and Comparisons, JKAS, 42, 161 https://doi.org/10.5303/JKAS.2009.42.6.161
  16. Lim, B., Sung, H., Karimov, R., & Ibrahimov, M. 2008, Characeristics of the Fairchild 486 CCD at Maidanak Astronomical Observatory in Uzbekistan, PKAS, 23, 1
  17. Lee, H. M., et al. 2009, North Ecliptic Pole Wide Field Survey of AKARI: Survey Strategy and Data Characteristics, PASJ, 61, 375 https://doi.org/10.1093/pasj/61.2.375
  18. Lee, I., Im, M., & Urata, Y. 2010, First Korean Observations of Gamma-Ray Burst Afterglows at Mt. Lemmon Optical Astronomy Observatory (LOAO), JKAS, to be submitted
  19. Lee, I., et al. 2008, Seoul National University Bright Quasar Survey in Optical (SNUQSO). I. First Phase Observations and Results, ApJS, 175, 116 https://doi.org/10.1086/523043
  20. Lee, I. 2009, Bright Quasar Survey, Seoul National University Ph.D Thesis in Astronomy
  21. Massey, P., & Jacoby, G. 1992, in Astronomical CCD Observing and Reduction Techniques, ASP Conference Series Vol. 23, ed. S. Howell, p. 240
  22. Monet, D. 1998, The 526,280,881 Objects In The USNO-A2.0 Catalog, BAAS, 30, 1427
  23. Pandey et al. 2009, Multi-Wavelength Observations of the GRB 080319B Afterglow and the Modeling Constraints, A&A, 504, 45 https://doi.org/10.1051/0004-6361/200811135
  24. Sako, M., et al. 2008, The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-Up Observations, AJ, 135, 348 https://doi.org/10.1088/0004-6256/135/1/348
  25. Shim, H. et al. 2007, Massive Lyman Break Galaxies at z rv 3 in the Spitzer Extragalactic First Look Survey, ApJ, 669, 749 https://doi.org/10.1086/522105
  26. Shim, H., et al. 2006, Deep u* - and g-Band Imaging of the Spitzer Space Telescope First Look Survey Field: Observations and Source Catalogs, ApJS, 164, 435 https://doi.org/10.1086/503709
  27. Smith, J. A., et al. 2002, The u'g'r'i'z' Standard-Star System, AJ, 123, 2121 https://doi.org/10.1086/339311
  28. Spectral Instruments Inc. 1999, 600 Series Camera System User's Manual
  29. Urata, Y., Huang, K., Im, M., Lee, I., et al. 2009, Swift GRB GRB071010B: Outlier of the $E^{src}_{peak} - E_\gamma$, and $E_{iso}-E^{src}_{peak}-t^{src}_{jet}$ Correlations, ApJ, 706, L183 https://doi.org/10.1088/0004-637X/706/1/L183

Cited by

  1. An Optical and Infrared Photometric Study of the Young Open Cluster IC 1805 in the Giant H ii Region W4 † vol.230, pp.1, 2017, https://doi.org/10.3847/1538-4365/aa6d76
  2. BROAD-LINE REVERBERATION IN THEKEPLER-FIELD SEYFERT GALAXY Zw 229-015 vol.732, pp.2, 2011, https://doi.org/10.1088/0004-637X/732/2/121
  3. OPTICAL IMAGES AND SOURCE CATALOG OFAKARINORTH ECLIPTIC POLE WIDE SURVEY FIELD vol.190, pp.1, 2010, https://doi.org/10.1088/0067-0049/190/1/166
  4. HECTOSPEC AND HYDRA SPECTRA OF INFRARED LUMINOUS SOURCES IN THEAKARINORTH ECLIPTIC POLE SURVEY FIELD vol.207, pp.2, 2013, https://doi.org/10.1088/0067-0049/207/2/37
  5. CORRELATION BETWEEN GALAXY MERGERS AND LUMINOUS ACTIVE GALACTIC NUCLEI vol.804, pp.1, 2015, https://doi.org/10.1088/0004-637X/804/1/34
  6. Mid-infrared luminosity function of local star-forming galaxies in the North Ecliptic Pole-Wide survey field ofAKARI vol.454, pp.2, 2015, https://doi.org/10.1093/mnras/stv2006
  7. J- ANDH-BAND IMAGING OFAKARINORTH ECLIPTIC POLE SURVEY FIELD vol.214, pp.2, 2014, https://doi.org/10.1088/0067-0049/214/2/20
  8. A tale of two GRB-SNe at a common redshift of z=0.54 vol.413, pp.1, 2011, https://doi.org/10.1111/j.1365-2966.2010.18164.x
  9. Camera for Quasars in Early Universe (CQUEAN)1 vol.124, pp.918, 2012, https://doi.org/10.1086/667390
  10. Sejong Open Cluster Survey (SOS) – II. IC 1848 cluster in the H ii region W5 West vol.438, pp.2, 2013, https://doi.org/10.1093/mnras/stt2283
  11. THE SEJONG OPEN CLUSTER SURVEY (SOS). IV. THE YOUNG OPEN CLUSTERS NGC 1624 AND NGC 1931 vol.149, pp.4, 2015, https://doi.org/10.1088/0004-6256/149/4/127
  12. AKARIOBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER ATz= 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES vol.745, pp.2, 2012, https://doi.org/10.1088/0004-637X/745/2/181
  13. A TALE OF TWO FEEDBACKS: STAR FORMATION IN THE HOST GALAXIES OF RADIO AGNs vol.784, pp.2, 2014, https://doi.org/10.1088/0004-637X/784/2/137
  14. THE INFRARED MEDIUM-DEEP SURVEY. II. HOW TO TRIGGER RADIO AGNs? HINTS FROM THEIR ENVIRONMENTS vol.797, pp.1, 2014, https://doi.org/10.1088/0004-637X/797/1/26
  15. SEJONG OPEN CLUSTER SURVEY. I. NGC 2353 vol.44, pp.2, 2011, https://doi.org/10.5303/JKAS.2011.44.2.39
  16. The North Ecliptic Pole Wide survey of AKARI: a near- and mid-infrared source catalog vol.548, 2012, https://doi.org/10.1051/0004-6361/201219105
  17. THE AFTERGLOWS OFSWIFT-ERA GAMMA-RAY BURSTS. I. COMPARING PRE-SWIFTANDSWIFT-ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS vol.720, pp.2, 2010, https://doi.org/10.1088/0004-637X/720/2/1513