DOI QR코드

DOI QR Code

Prediction of Radical Reaction Positions in PAHs by Semi-Empirical Calculation

반경험적인 계산에 의한 다환방향족탄화수소류의 라디칼 반응위치 예측

Lee, Byung-Dae
이병대

  • Received : 2010.02.02
  • Accepted : 2010.04.12
  • Published : 2010.06.30

Abstract

Each four polycyclic aromatic hydrocarbons (PAHs) was reacted with OH radical at $1.5{\AA}$ distance by CAChe MOPAC 2000 program. These results were compared to those reported experimental results. Reaction positions of all four PAHs corresponded with predicted positions in which ${\Delta}$E(HOMO-LUMO) was approximately 4.7. Finally oxygen of OH radical combined with PAH and quinone form of products were produced. These results indicate that the proposed determining the ${\Delta}$E(HOMO-LUMO) can be effectively applied to predict reaction position of recalcitrant compounds such as dioxins, PCBs, POPs, and etc.

Keywords

HOMO;LUMO;PAHs;Radical reaction position

References

  1. Mekenyan, O. G., Ankley, G. T., Veith, G. D., Call, D. J., 1994, QSARs for photoinduced toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna, Chemosphere, 28, 567-582. https://doi.org/10.1016/0045-6535(94)90299-2
  2. Government of Canada, 1994, Priority substances listpolycyclic aromatic hydrocarbons, National printers, Ottawa, Canada.
  3. Phillips, D. H., 1983, Fifty years of benzo(a)pyrene, Nature, 303, 468-472. https://doi.org/10.1038/303468a0
  4. Warman, K., 1985, PAH emissions from coal-fired plants. In: Handbook of polycyclic aromatic hydrocarbons, Vol 2, Emission source and recent progress in analytical chemistry, Marcel Dekker Inc., New York, 21-59.
  5. Smith, I. M., 1984, PAH from coal utilisation-emissions and effects", IEA Coal Research, London, England, ICTIS/TR29.
  6. Talat, S., Saleh, A., Amal, A., 1996, Post-gulf war assessment of the levels of PAHs in the sediments from SHUAIBA industrial area, KUWAIT. Proc. IAWPRC, 2, 196-202.
  7. Joshi, M. M., Lee, S., 1996, Optimization of surfactant aided remediation of industrially contaminated soil. Energ. Source, 18, 291-301. https://doi.org/10.1080/00908319608908768
  8. Cookson, J. T., 1996, Bioremediation engineering, design and application, McGraw-Hill, New York, pp. 110.
  9. Watts, R. J., 1992, Hydrogen peroxide for physicochemically degrading petroleum- contaminated soils. Remediation, Autumn, 413.
  10. U.S. EPA, 1993, In situ thermal oxidative($HRUBOUT^{TM}$) process, EPA/540/MR-93/524, pp. 257.
  11. Lee, B. D., Kim, Y. C., 2007, Degradation characteristics of acenaphthene or acenaphthylene by Fenton oxidation, J. Kor. Oil, Chem. Soc., 24(1), 47-53.
  12. Rivas, J., Gimeno, O., de la Calle, R. G., Beltran, F. J., 2009, Ozone treatment of PAH contaminated soils: Operating variables effect, J. Hazard. Mater., 169(1-3), 509-515. https://doi.org/10.1016/j.jhazmat.2009.03.136
  13. Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K., Yobiko, Y., 2006, Degradation of polychlorinated dibenzop-dioxins in aqueous solution by Fe(II)/H2O2/UV system, Chemosphere, 63(4), 592-599. https://doi.org/10.1016/j.chemosphere.2005.08.015
  14. Hirota, M., Takashita, H., Kato, J., Fuwa, A., 2003, Elementary reaction path on polychlorinated biphenyls formation from polychlorinated benzenes in heterogeneous phase using ab initio molecular orbital calculation, Chemosphere, 50(4), 457-467. https://doi.org/10.1016/S0045-6535(02)00626-4
  15. Lee, B. D., Iso, M., Hosomi, M., 2001, Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density, Chemoshpere, 42, 431-435. https://doi.org/10.1016/S0045-6535(00)00061-8
  16. Martha, W., Susan, B., Lorraine, Y. S., Margaret, N. F., 1983, The Merck index (10thed.). Merck&Co. Inc., Rahway, pp. 313.
  17. Midwest Research Institute, 1991, Material Safety Data, MRI# 0483, 0484. MRI, Kansas.