DOI QR코드

DOI QR Code

3-Acetylpyridine에 의한 운동실조 동물모델에서 로타로드 운동과 전침이 근활성도와 혈청 BDNF에 미치는 영향

Effects of Rotarod Exercise and Electroacupuncture on Muscle Activity and Serum BDNF Level in the Ataxic Rats by the 3-Acetylpyridine

  • 노민희 (부산가톨릭대학교 보건과학대학 물리치료학과) ;
  • 박수경 (부산가톨릭대학교 보건과학대학 물리치료학과)
  • 투고 : 2009.11.25
  • 심사 : 2010.03.30
  • 발행 : 2010.04.28

초록

3-Acetylpyridine(3-AP)는 아래올리브핵을 선택적으로 파괴함으로써, 소뇌 손상을 유발하는 신경독소이다. 본 연구에서는 3-AP의 투여로 운동실조가 유발된 동물모델에서 로타로드 운동과 전침이 후지의 근활성도와 혈청 BDNF에 미치는 영향을 알아보고자 하였다. 본 연구를 위해 실험동물을 대조군, 3-AP군, 운동군, 전침군 그리고 운동전침군으로 무작위 배치하였다. 3-AP군의 최대점핑수직높이는 대조군에 비해 유의하게 감소하였고, 로타로드 운동과 전침의 적용 이후 점차 증가하는 것으로 나타났다. 또한 후지의 근활성도는 3-AP의 투여로 유의하게 증가하였고, 치료적 중재 이후 약간의 감소를 보였다. 3-AP군의 혈청 BDNF 농도는 대조군보다 유의하게 증가하였고, 운동군, 전침군 그리고 운동전침군에서는 3-AP군보다 감소하는 것으로 나타났다. 이러한 결과를 통해 로타로드 운동과 전침은 운동실조 동물모델의 기능적 회복에 긍정적인 치료효과를 가지는 것으로 생각된다.

키워드

운동실조;로타로드운동;전침;근활성도

과제정보

연구 과제 주관 기관 : 부산가톨릭대학교

참고문헌

  1. M. Ito, "Mechanisms of motor learning in the cerebellum," Brain Res, Vol.886, No.1-2, pp.237-245, 2000. https://doi.org/10.1016/S0006-8993(00)03142-5
  2. E. R. Kandal and J. H. Schwartz, Principle of neural science, MacGrew-Hill Co., 2001.
  3. T. Ohyama, W. L. Nores, M. Murphy, and M. D. Mauk, "What the cerebellum computes," Trends Neurosci, Vol.26, No.4, pp.222-227, 2003. https://doi.org/10.1016/S0166-2236(03)00054-7
  4. A. E. Mautes, K. Fukuda, and L. J. Noble, "Cellular response in the cerebellum after midline traumatic brain injury in the rat," Neurosci Lett, Vol.214, No.2-3, pp.95-98, 1996. https://doi.org/10.1016/0304-3940(96)12916-5
  5. S. J. Moss, B. Birkestrand, and S. C. Fowler, "The neuroimmunophilin GPI-1046 partially protects against 3-acetylpyridine toxicity in the rat," Neurosci Lett, Vol.321, No.1-2, pp.53-56, 2002. https://doi.org/10.1016/S0304-3940(01)02571-X
  6. G. Biggio, B. B. Brodie, E. Costa, and A. Guidotti, "Mechanisms by which diazepam, muscimol, and other drugs change the content of cGMP in cerebellar cortex," Proc Natl Acad Sci U S A, Vol.74, No.8, pp.3592-3596, 1977. https://doi.org/10.1073/pnas.74.8.3592
  7. Y. Watanabe, K. Kinoshita, A. Koguchi, and M. Yamamura, "A new method for evaluation of motor deficits in 3-acetylpyridine-treated rats," J Neurosci Methods, Vol.77, No.1, pp.25-29, 1997. https://doi.org/10.1016/S0165-0270(97)00104-0
  8. R. Llinas, K. Walton, D. E. Hillman, and C. Sotelo, "Inferior olive: its role in motor learning," Science, Vol.190, No.4220, pp.1230-1231, 1975. https://doi.org/10.1126/science.128123
  9. V. H. Sethy, H. Wu, J. A. Oostveen, and E. D. Hall, "Neuroprotective effects of the pyrrolopyrimidine U-104067F in 3-acetylpyridinetreated rats," Exp Neurol, Vol.140, No.1, pp.79-83, 1996. https://doi.org/10.1006/exnr.1996.0117
  10. C. A. Giuliani, "Dorsal rhizotomy for children with cerebral palsy: support for concepts of motor control," Phys Ther, Vol.71, No.3, pp.248-259, 1991. https://doi.org/10.1093/ptj/71.3.248
  11. 황준, 송명남, 조수영, "터치스크린을 이용한 운동실조 측정 도구 개발", 한국운동역학회지, 제 10권, 제1호, pp.149-163, 2000.
  12. S. D. Bagg and W. J. Forrest, "Electromyographic study of the scapular rotators during arm abduction in the scapular plane," Am J Phys Med, Vol.65, No.3, pp.111-124, 1986.
  13. J. Chae, G. Yang, B. K. Park, and I. Labatia, "Delay in initiation and termination of muscle contraction, motor impairment, and physical disability in upper limb hemiparesis," Muscle Nerve, Vol.25, No.4, pp.568-575, 2002. https://doi.org/10.1002/mus.10061
  14. M. C. Hammond, G. H. Kraft, and S. S. Fitts, "Recruitment and termination of electromyographic activity in the hemiparetic forearm," Arch Phys Med Rehabil, Vol.69, No.2, pp.106-110, 1988.
  15. H. S. Phillips, J. M. Hains, G. R. Laramee, A. Rosenthal, and J. W. Winslow, "Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons," Science, Vol.250, No.4978, pp.290-294, 1990. https://doi.org/10.1126/science.1688328
  16. C. Wetmore, P. Ernfors, H. Persson, and L. Olson, "Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in situ hybridization," Exp Neurol, Vol.109, No.2, pp.141-152, 1990. https://doi.org/10.1016/0014-4886(90)90068-4
  17. D. Lindholm, G. Dechant, C. P. Heisenberg, and H. Thoenen, "Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity," Eur J Neurosci, Vol.5, No.11, pp.1455-1464, 1993. https://doi.org/10.1111/j.1460-9568.1993.tb00213.x
  18. L. Novikov, L. Novikova, and J. O. Kellerth, "Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo," Neuroscience, Vol.79, No.3, pp.765-774, 1997. https://doi.org/10.1016/S0306-4522(96)00665-3
  19. J. Y. Zhang, X. G. Luo, C. J. Xian, Z. H. Liu, and X. F. Zhou, "Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents," Eur J Neurosci, Vol.12, No.12, pp.4171-4180, 2000.
  20. H. J. Cho, S. Y. Kim, M. J. Park, D. S. Kim, J. K. Kim, and M. Y. Chu, "Expression of mRNA for brain-derived neurotrophic factor in the dorsal root ganglion following peripheral inflammation," Brain Res, Vol.749, No.2, pp.358-362, 1997. https://doi.org/10.1016/S0006-8993(97)00048-6
  21. D. S. Kim, S. J. Lee, and H. J. Cho, "Differential usage of multiple brain-derived neurotrophic factor promoter in rat dorsal root ganglia following peripheral nerve injuries and inflammation," Brain Res Mol Brain Res, Vol.92, No.1-2, pp.167-171, 2001. https://doi.org/10.1016/S0169-328X(01)00154-1
  22. S. Pezet, M. Malcangio, and S. B. McMahon, "BDNF: a neuromodulator in nociceptive pathways?" Brain Res Brain Res Rev, Vol.40, No.1-3, pp.240-249, 2002. https://doi.org/10.1016/S0165-0173(02)00206-0
  23. S. A. Neeper, F. Gomez-Pinilla, J. Choi, and C. Cotman, "Exercise and brain neurotrophins," Nature, Vol.373, No.6510, pp.109, 1995. https://doi.org/10.1038/373109a0
  24. D. P. Holschneider, J. Yang, Y. Guo, and J. M. Maarek, "Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway," Brain Res, Vol.12, No.1184, pp.96-107, 2007.
  25. Y. Dinga, J. Lia, Q. Laib, J. A. Rafolsc, X. Luana, J. Clarka, and F. G. Diaz, "Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion," Neuroscience, Vol.123, No.3, pp.667-674, 2004. https://doi.org/10.1016/j.neuroscience.2003.08.031
  26. A. Gasbarri, A. Pompili, C. Pacitti, and F. Cicirata, "Comparative effects of lesions to the pontocerebellar and olivocerebellar pathways on motor and spatial learning in the rat," Neuroscience, Vol.116, No.4, pp.1131-1140, 2003. https://doi.org/10.1016/S0306-4522(02)00780-7
  27. M. H. Jang, M. C. Shin, G. S. Koo, C. Y. Lee, E. H. Kim, and C. J. Kim, "Acupuncture decreases nitric oxide synthase expression in periaqueductal gray area of rats with streptozotocin-induced diabetes," Neurosci Lett, Vol.337, No.3, pp.155-158, 2003. https://doi.org/10.1016/S0304-3940(02)01318-6
  28. Z. N. Huang, R. Yang, G. Chen, and J. S. Cheng, "Effect of electroacupuncture and 7-NI on penicillin-induced epilepsy and their relation with intrahippocampal NO changes," Sheng Li Xue Bao, Vol.51, No.5, pp.508-514, 1999.
  29. E. Noguchi, H. Ohsawa, S. Kobayashi, M. Shimura, S. Uchida, and Y. Sato, "The effect of electroacupuncture stimulation on the muscle blood flow of the hindlimb in anesthetized rats," J Auton Nerv Syst, Vol.75, No.2-3, pp.78-86, 1999. https://doi.org/10.1016/S0165-1838(98)00144-1
  30. 김수한, 최홍식, 김택훈, 신헌석, 김지성, 송치원, "침전극 저주파자극이 흰쥐의 Caspase-3, 9와 Neuronal Nitric Oxide Synthase 면역반응세포 변화에 미치는 영향", 한국전문물리치료학회지, 제11권, 제2호, pp.47-62, 2004.
  31. 김종인, 김용석, 김창환, "전침자극이 Spontaneously Hypertensive Rat의 대뇌겉질, 뇌줄기, 소뇌 부위의 Nitric Oxide Synthase 신경세포에 미치는 영향", 대한침구학회지, Vol.18, No.4, pp.116-124, 2001.
  32. G. E. Gibson and J. P. Blass, "Oxidative metabolism and acetylcholine synthesis during acetylpyridine treatment," Neurochem Res, Vol.10, No.4, pp.453-467, 1985. https://doi.org/10.1007/BF00964650
  33. J. H. Kim, B. I. Min, D. Schmidt, H. J. Lee, and D. S. Park, "The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats," Neurosci Lett, Vol.279, No.3, pp.149-152, 2000. https://doi.org/10.1016/S0304-3940(99)00994-5
  34. J. R. Cream, G. S. Kasman, and Holtz J, Introduction to surface electomyography: Instrumentation, Aspen, 1998.
  35. G. A. Hanssona, C. Nordandera, P. Asterlanda, K. Ohlssona, U. Stromberga, S. Skerfvinga, and D. Rempelc, "Sensitivity of trapezius electromyography to differences between work tasks-influence of gap definition and normalisation methods," J Electromyogr Kinesiol, Vol.10, No.2, pp.103-115, 2000. https://doi.org/10.1016/S1050-6411(99)00030-9
  36. A. I. Caplan, "The effects of the nicotinamide sensitive teratogen 3-acetylpyridine on chick limb mesodermal cells in culture: biochemical parameters," J Exp Zool, Vol.180, No.3, pp.351-362, 1972. https://doi.org/10.1002/jez.1401800306
  37. M. Weller, A. M. Marini, and S. M. Paul, "Niacinamide blocks 3-acetylpyridine toxicity of cerebellar granule cells in vitro," Brain Res, Vol.594, No.1, pp.160-164, 1992. https://doi.org/10.1016/0006-8993(92)91043-E
  38. J. C. Desclin and F. Colin, "The olivocerebellar system. II. Some ultrastructural correlates of inferior olive destruction in the rat," Brain Res, Vol.187, No.1, pp.29-46, 1980. https://doi.org/10.1016/0006-8993(80)90492-8
  39. 임재형, "쥐의 점프 운동학습이 소뇌 퍼킨제 세포 및 해마 피라미드 세포의 신경연접 효율성과 내측 비복근 근방추의 형태에 미치는 영향", 서울대학교 대학원, 박사학위논문, 1998.
  40. R. Balliet, K. B. Harbst, D. Kim, and R. V. Stewart, "Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia," Int Rehabil Med, Vol.8, No.4, pp.148-153, 1987.
  41. D. Xu, T. Liu, J. Ashe, and K. O. Bushara, "Role of the Olivo-Cerebellar System in Timing," J Neurosci, Vol.26, No.22, pp.5990-5995, 2006. https://doi.org/10.1523/JNEUROSCI.0038-06.2006
  42. D. Soppet, E. Escandon, J. Maragos, D. S. Middlemas, S. W. Reid, J. Blair, L. E. Burton, B. R. Stanton, D. R. Kaplan, T. Hunter, K. Nikolics, and L. F. Parade, "The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor," Cell, Vol.65, No.5, pp.895-903, 1991. https://doi.org/10.1016/0092-8674(91)90396-G
  43. M. Barbacid, "Neurotrophic factors and their receptors," Curr Opin Cell Biol, Vol.7, No.2, pp.148-155, 1995. https://doi.org/10.1016/0955-0674(95)80022-0
  44. H. Kalish and T. M. Phillips, "Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following trauma tic head injury," J Chromatogr B Analyt Technol Biomed Life Sci, 2009.
  45. C. S. Gama, A. C. Andreazza, M. Kunz, M. Berk, P. S. Belmonte-de-Abreu, and F. Kapczinski, "Serum levels of brain-derived neurotrophic factor in patients with schizophrenia and bipolar disorder," Neurosci Lett, Vol.420, No.1, pp.45-48, 2007. https://doi.org/10.1016/j.neulet.2007.04.001
  46. H. J. Reis, R. Nicolato, I. G. Barbosa, P. H. Teixeira do Prado, M. A. Romano-Silva, and A. L. Teixeira, "Increased serum levels of brain-derived neurotrophic factor in chronic institutionalized patients with schizophrenia," Neurosci Lett, Vol.439, No.2, pp.157-159, 2008. https://doi.org/10.1016/j.neulet.2008.05.022
  47. F. Angelucci, G. Spalletta, F. di Iulio, A. Ciaramella, F. Salani, L. Colantoni, A. E. Varsi, W. Gianni, G. Sancesario, C. Caltagirone, and P. Bossu, "Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) Patients are Characterized by Increased BDNF Serum Levels," Curr Alzheimer Res, Vol.7, No.1, pp.15-20, 2010. https://doi.org/10.2174/156720510790274473
  48. S. Rojas Vega, T. Abel, R. Lindschulten, W. Hollmann, W. Bloch, and H. K. Struder, "Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans," Neuroscience, Vol.153, No.4, pp.1064-1070, 2008. https://doi.org/10.1016/j.neuroscience.2008.03.037
  49. 이명화, 변용현, 윤범철, 김창주, "좌골신경손상 흰쥐에서 수영운동이 운동기능의 회복과 뇌유 인성 신경영양인자의 발현에 미치는 영향", 대한물리치료학회, 제 16권, 제 2호, pp.273-281, 2004.
  50. S. A. Neeper, F. Gomez-Pinilla, J. Choi, and C. W. Cotman, "Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain," Brain Res, Vol.726, No.1-2, pp.49-56, 1996. https://doi.org/10.1016/0006-8993(96)00273-9