DOI QR코드

DOI QR Code

ON ARMENDARIZ IDEALS

  • Ghalandarzadeh, Sh. (DEPARTMENT OF MATHEMATICS K. N. TOOSI UNIVERSITY OF TECHNOLOGY) ;
  • Javadi, H. Haj Seyyed (DEPARTMENT OF MATHEMATICS SHAHED UNIVERSITY) ;
  • Khoramdel, M. (DEPARTMENT OF MATHEMATICS K. N. TOOSI UNIVERSITY OF TECHNOLOGY) ;
  • Fard, M. Shamsaddini (DEPARTMENT OF MATHEMATICS K. N. TOOSI UNIVERSITY OF TECHNOLOGY)
  • Received : 2007.08.21
  • Accepted : 2009.08.24
  • Published : 2010.09.30

Abstract

In this paper, we introduce the concepts of Armendariz ideals and abelian ideals and record some results involving them.

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Aust. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  3. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  4. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  5. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  6. T. K. Lee and T. L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
  7. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  8. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9