DOI QR코드

DOI QR Code

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Received : 2009.04.10
  • Published : 2010.09.30

Abstract

In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.

Keywords

multiplication module;semi-injective module;self-cogenerated module;tight closed submodule and closed submodule

References

  1. S.-S. Bae, On submodules inducing prime ideals of endomorphism ring, East Asian Math. J. 16 (2000), no. 1, 33-48.
  2. S.-S. Bae, Modules with prime endomorphism rings, J. Korean Math. Soc. 38 (2001), no. 5, 987-1030.
  3. C. W. Choi, Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1-8.
  4. C. W. Choi and P. F. Smith, On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1994), no. 1, 89-95.
  5. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. https://doi.org/10.1080/00927878808823601
  6. E. S. Kim and C. W. Choi, On multiplication modules, Kyungpook Math. J. 32 (1992), no. 1, 97-102.
  7. S. C. Lee, Finitely generated modules, J. Korean Math. Soc. 28 (1991), no. 1, 1-11.
  8. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989.
  9. S. Mandal, Projective Modules and Complete Intersections, Springer-Verlag, Berlin, 1997.
  10. E. Mermut, C. Santa-Clara, and P. F. Smith, Injectivity relative to closed submodules, J. Algebra 321 (2009), no. 2, 548-557. https://doi.org/10.1016/j.jalgebra.2008.11.004
  11. D. W. Sharpe and P. Vamos, Injective Modules, Cambridge University Press, London-New York, 1972.
  12. W. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. https://doi.org/10.1090/S0002-9947-1969-0238839-5
  13. S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 1, 27-33.

Acknowledgement

Supported by : CBNU