DOI QR코드

DOI QR Code

Synthesis of Ni Nanopowder by Wire Explosion in Liquid Media

액중 전기폭발법을 이용한 니켈 나노분말 제조

  • Cho, Chu-Hyun (Industry Application Research Division, Korea Electrotechnology Research Institute) ;
  • Kang, Chung-Il (Industry Application Research Division, Korea Electrotechnology Research Institute) ;
  • Ha, Yoon-Cheol (Industry Application Research Division, Korea Electrotechnology Research Institute) ;
  • Jin, Yun-Sik (Industry Application Research Division, Korea Electrotechnology Research Institute) ;
  • Lee, Kyung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
  • 조주현 (한국전기연구원 산업전기연구본부) ;
  • 강충일 (한국전기연구원 산업전기연구본부) ;
  • 하윤철 (한국전기연구원 산업전기연구본부) ;
  • 진윤식 (한국전기연구원 산업전기연구본부) ;
  • 이경자 (한국원자력연구원 원자력재료연구부) ;
  • 이창규 (한국원자력연구원 원자력재료연구부)
  • Received : 2010.07.16
  • Accepted : 2010.08.17
  • Published : 2010.09.01

Abstract

Nickel wires of 0.8 mm in diameter and 80 mm in length were electrically exploded in liquid media such as water, ethyl alcohol. The distribution of particle sizes was broad from a few micrometers to tens of nanometer. It was identified that the particles could be classified according to its sizes by using centrifugal separator. The powder prepared in distilled water showed mainly pure metallic Ni phase although a little oxide phase was observed. The powders prepared in ethyl alcohol showed complicated unknown phases, which is attributed to the compound of carbon in the organic liquid. This unknown phase was turned to pure metallic Ni phase after heat treatment.

Keywords

Nickel;Ni nanopowder;Pulsed power;Wire explosion in liquid;Size classification

References

  1. F. G. Karioris and B. R. Fish, J. Colloid Sci. 17, 155 (1962). https://doi.org/10.1016/0095-8522(62)90006-5
  2. Yu. A. Kotov, E. I. Azarkevich, I. V. Beketov, T. M. Demina, A. M. Murzakaev, and O. M. Samatov, Key Eng. Mater. 132-136, 173 (1997). https://doi.org/10.4028/www.scientific.net/KEM.132-136.173
  3. W. Jiang and K. Yatsui, IEEE Trans. Plasma Sci. 26, 1498 (1998). https://doi.org/10.1109/27.736045
  4. C. Cho, Y. Kinemuchi, H. Suematsu, W. Jiang, and K. Yatsui, Jpn. J. Appl. Phys. 42, 1763 (2003). https://doi.org/10.1143/JJAP.42.1763
  5. C. Cho, K. Murai, T. Suzuki, H. Suematsu, W. Jiang, and K. Yatsui, Trans. Mater. Res. Soc. Jpn. 28, 1187 (2003).
  6. C. Cho, K. Murai, T. Suzuki, H. Suematsu, W. Jiang, and K. Yatsui, IEEE Trans. Plasma Sci. 32, 2062 (2004). https://doi.org/10.1109/TPS.2004.835476
  7. C. Cho, S. Park, Y. Choi, and B. Kim, Surf. Coat. Tech. 201, 4847 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.032
  8. C. Cho, Y. W. Choi, C. Kang, and G. W. Lee, Appl. Phys. Lett. 91, 141501 (2007). https://doi.org/10.1063/1.2794724
  9. C.-H. Cho, B.-G. Kim, S.-H. Park, C.-I. Kang, H.-S. Lee, G.-H. Im, Trans. KIEE 55C, 452 (2006).
  10. J. D. Cox, D. D. Wagman, and V. A. Medvedev, Codata Key Values For Thermodynamics, (Hemisphere Publishing Corp., NY, 1989).