DOI QR코드

DOI QR Code

Spin-polarized Current Switching of Co/Cu/Py Pac-man type II Spin-valve

  • Lyle, Andrew (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Hong, Yang-Ki (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Choi, Byoung-Chul (Department of Physics and Astronomy, University of Victoria) ;
  • Abo, Gavin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Bae, Seok (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Jalli, Jeevan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Lee, Jae-Jin (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama) ;
  • Park, Mun-Hyoun (Hitachi Global Storage Technologies) ;
  • Syslo, Ryan (Department of Electrical and Computer Engineering and MINT Center, The University of Alabama)
  • Received : 2010.06.22
  • Accepted : 2010.08.09
  • Published : 2010.09.30

Abstract

We investigated spin-polarized current switching of Pac-man type II (PM-II) nanoelements in Pac-man shaped nanoscale spin-valves (Co/Cu/Py) using micromagnetic simulations. The effects of slot angle and antiferromagnetic (AFM) layer were simulated to obtain optimum switching in less than 2 ns. At a critical slot angle of $105^{\circ}$, the lowest current density for anti-parallel to parallel (AP-P) switching was observed due to no vortex or antivortex formation during the magnetic reversal process. All other slot angles for AP-P formed a vortex or antivortex during the magnetization reversal process. Additionally, a vortex or anti-vortex formed for all slot angles for parallel to anti-parallel (P-AP) switching. The addition of an AFM layer caused the current density to decrease significantly for AP-P and P-AP at slot angles less than $90^{\circ}$. However, at slot angles greater than $90^{\circ}$, the current density tended to decrease by less amounts or actually increased slightly as shape anisotropy became more dominant. This allowed ultra-fast switching with 5.05 and $5.65{\times}10^8\;A/cm^2$ current densities for AP-P and P-AP, respectively, at a slot angle of $105^{\circ}$.

References

  1. N. C. Emley, F. J. Albert, E. M. Ryan, I. N. Krivorotov, D. C. Ralph, J. M. Daughton, and A. Jander, Appl. Phys. Lett. 84, 4257 (2004). https://doi.org/10.1063/1.1757638
  2. P. M. Braganca, I. N. Krivorotov, O. Ozaty, A. G. F. Garcia, N. C. Emley, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 87, 112507 (2005). https://doi.org/10.1063/1.2045552
  3. J. Janesky N. D. Rizzo, L. Savtchenko, B. Engel, J. M. Slaughter, and S. Tehrani, IEEE Trans. Magn. 37, 2052 (2001). https://doi.org/10.1109/20.951050
  4. S. Tehrani J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizzo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, Proc. IEEE 91, 703 (2003). https://doi.org/10.1109/JPROC.2003.811804
  5. H. Hu, H. Wang, M. R. McCartney, and D. J. Smith, J. Magn. Magn. Mater. 290, 234 (2005). https://doi.org/10.1016/j.jmmm.2004.11.576
  6. M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, and B. C. Choi, Appl. Phys. Lett. 83, 329 (2003). https://doi.org/10.1063/1.1592002
  7. M. H. Park, Y. K. Hong, S. H. Gee, D. W. Erickson, T. Tanaka, and B. C. Choi, J. Appl. Phys. 95, 7019 (2004). https://doi.org/10.1063/1.1687252
  8. B. R. Pujada, J. Svendsen, K. O. Chipeniuk, B. C. Choi, M. H. Park, Y. K. Hong, S. H. Gee, and D. W. Erickson, J. Appl. Phys. 96, 4362 (2004). https://doi.org/10.1063/1.1793358
  9. H. Han, Y. K. Hong, M. H. Park, B. C. Choi, S. H. Gee, J. F. Jabal, G. Abo, A. Lyle, B. Wong, and G. W. Donohoe, IEEE Trans. Magn. 41, 4341, (2005). https://doi.org/10.1109/TMAG.2005.855289
  10. B. C. Choi, J. Rudge, E. Girgis, J. Kolthammer, Y. K. Hong, and A. Lyle, Appl. Phys. Lett. 91, 22501 (2007). https://doi.org/10.1063/1.2756109
  11. H. Meng and J. P. Wang, Appl. Phys. Lett. 89, 152509 (2006). https://doi.org/10.1063/1.2361280
  12. X. Yao, H. Meng, Y. Zhang, and J. P. Wang, J. Appl. Phys. 103, 07A717 (2008). https://doi.org/10.1063/1.2837485
  13. G. Finnocchoi, I. N. Krivorotov, L. Torres, R. A. Buhrman, D. C. Ralp, and B. Azzerboni, Phys. Rev. B 76, 174408 (2007). https://doi.org/10.1103/PhysRevB.76.174408
  14. A. Lyle, Y. K. Hong, B. C. Choi, G. S. Abo, M. H. Park, S. H. Gee, J. Jalli, S. Bae, and G. W. Donohoe, IEEE Trans. Magn. 45, 2367 (2009). https://doi.org/10.1109/TMAG.2009.2018576
  15. M. R. Scheinfein, LLG Micromagnetic $Simulator^{TM}$
  16. J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5
  17. L. Wang, J. H. Giusti, and J. Fernando-de-Castro, J. Appl. Phys. 89, 7006 (2001). https://doi.org/10.1063/1.1355332
  18. Y. Liu, S. Gliga, R. Hertel, and C. M. Schneider, Appl. Phys. Lett. 91, 112501 (2007). https://doi.org/10.1063/1.2780107
  19. R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, arXiv:cond-mat/0611668v2, (November 2006).
  20. S. S. P. Parkin, R. Bhadra, and K. P. Roche, Phys. Rev. Lett. 66, 2152 (1991). https://doi.org/10.1103/PhysRevLett.66.2152
  21. C. T. Yen, W. C. Chen, D. Y. Wang, Y. J. Lee, C. T. Shen, S. Y. Yang, C. H. Tsai, C. C. Hung, K. H. Shen, M. J. Tsai, and M. J. Kao, Appl. Phys. Lett. 93, 092504 (2008). https://doi.org/10.1063/1.2978097
  22. Y. Jiang, T. Nozaki, S. Abe, T. Ochiai, A. Hirohata, N. Tezuka, and K. Inomata, Nature 3, 361 (2004). https://doi.org/10.1038/nmat1120
  23. J. P. Wang, W. K. Shen, J. M. Bai, R. H. Victora, J. H. Judy, and W. L. Song, Appl. Phys. Lett. 86, 142504 (2005). https://doi.org/10.1063/1.1896431

Cited by

  1. Reduced Switching Current Density in Spin Transfer Torque with Lateral Symmetry Breaking Structure vol.6, pp.10, 2013, https://doi.org/10.7567/APEX.6.103001