Satistical Analysis of SiO2 Contact Hole Etching in a Magnetically Enhanced Reactive Ion Etching Reactor

  • Liu, Chunli (Department of Physics, Hankuk University of Foreign Studies) ;
  • Shrauner, B. (Department of Electrical and Systems Engineering, Washington University)
  • Received : 2010.07.06
  • Accepted : 2010.08.31
  • Published : 2010.09.30


Plasma etching of $SiO_2$ contact holes was statistically analyzed by a fractional factorial experimental design. The analysis revealed the dependence of the etch rate and DC self-bias voltage on the input factors of the magnetically enhanced reactive ion etching reactor, including gas pressure, magnetic field, and the gas flow rates of $CHF_3$, $CF_4$, and Ar. Empirical models of the DC self-bias voltage and etch rate were obtained. The DC self-bias voltage was found to be determined mainly by the operating pressure and the magnetic field, and the etch rate was related mainly to the pressure and the flow rates of Ar and $CHF_3$.


  1. B. Wu, J. Vac. Sci. Technol. B 24, 1 (2006).
  2. B. Jinnai, T. Orita, M. Konishi et al. J. Vac. Sci. Technol. B 25, 1808 (2007).
  3. M. A. Lieberman, A. J. Lichtenberg, and S. E. Savas, IEEE Trans. Plasma Sci. 19, 189 (1991).
  4. J. C. Park and B. K. Kang, IEEE Trans. Plasma Sci. 25, 499 (1997).
  5. S. J. You, S. K. Ahn, and H. Y. Chang, Surf. Coat. Tech. 193, 81 (2005).
  6. S. H. Lee, S. J. You, H. Y. Chang, and J. K. Lee, J. Vac. Sci. Technol. A 25, 455 (2007).
  7. G. S. May, J. Huang, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 4, 83 (1991).
  8. M. J. Buie, J. T. Pender, and P. L. G. Ventzek, Jpn. J. Appl. Phys. Part 1 36, 4838 (1997).
  9. P. E. Riley, V. D. Kulkarni, and S. H. Bishop, J. Vac. Sci. Technol. B 7, 24 (1989).
  10. A. Camacho and D. V. Morgan, J. Vac. Sci. Technol. B 12, 2933 (1994).
  11. B. Kim and K. H. Kwon, J. Appl. Phys. 93, 76 (2003).
  12. W. Guo and H. H. Sawin, J. Phys. D-Appl. Phys. 42, 194014 (2009).
  13. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons, New York (1978).
  14. S. Nakagawa, T. Sasaki, H. Mori, and T. Namura, Jpn. J. Appl. Phys. Part 1 33, 2194 (1994).
  15. H. C. Shin, K. Noguchi, X. Y. Qian, N. Jha, G. Hills, and C. Hu, IEEE Electron Device Lett. 14, 88 (1993).
  16. Y. Li, A. Iizuka, and N. Sato, Phys. Rev. B 132, 585 (1997).
  17. M. J. Buie, J. T. P. Pender, and M. Dahimene. J. Vac. Sci. Technol. A 16, 1464. (1998).
  18. R. Lindley, C. Bjorkman, H. Shan et al. Solid State Technol. 40, 93 (1997).
  19. S. J. You, C. W. Chung, K. H. Bai, and H. Y. Chang, Appl. Phys. Lett. 81, 2529 (2002).
  20. M. A. Lieberman and A. Lichtenberg. Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York (1994).
  21. G. Y. Yeom and M. Kushner, Appl. Phys. Lett. 56, 857 (1990).
  22. A. Furuya and S. Hirono, J. Appl. Phys. 68, 304 (1990).
  23. A. Furuya and S. Hirono, J. Appl. Phys. 87, 939 (2000).
  24. A. J. Van Roosmalen, W. G. M. Van den Hoek, and H. Kalter, J. Appl. Phys. 58, 653 (1985).
  25. A. Seabaugh. J. Vac. Sci. Technol. B 6, 77 (1988).
  26. M. V. Bazylenko and M. Gross, J. Vac. Sci. Technol. A 14, 2994 (1996).
  27. D. L. Flamm, in Plasma Etching, An Introduction, edited by D. M. Manos and D. L. Flamm, Academic Press, Boston (1989).