Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application

조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석

  • Yuk, Kun-Young (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Kim, Ye-Tae (College of Pharmacy, Chungnam National University) ;
  • Im, Su-Jin (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Garner, John (Akina, Inc.) ;
  • Fu, Yourong (Akina, Inc.) ;
  • Park, Ki-Nam (Department of Biomedical Engineering and Pharmaceutics, Purdue University) ;
  • Park, Jeong-Sook (College of Pharmacy, Chungnam National University) ;
  • Huh, Kang-Moo (Department of Polymer Science and Engineering, Chungnam National University)
  • 육군영 (충남대학교 고분자공학과) ;
  • 김예태 (충남대학교 약학대학) ;
  • 임수진 (충남대학교 고분자공학과) ;
  • ;
  • ;
  • 박기남 (퍼듀대학교 약학대학) ;
  • 박정숙 (충남대학교 약학대학) ;
  • 허강무 (충남대학교 고분자공학과)
  • Received : 2010.01.07
  • Accepted : 2010.02.06
  • Published : 2010.05.25

Abstract

In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

Acknowledgement

Supported by : 한국연구재단, 식품의약품안전청

References

  1. W. E. Hennink and C. F. van Nostrum, Adv. Drug Deliv. Rev., 54, 13 (2002). https://doi.org/10.1016/S0169-409X(01)00240-X
  2. J. Kopecek, Biomaterials, 28, 5185 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.044
  3. A. S. Hoffman, Adv. Drug Deliv. Rev., 54, 3 (2002). https://doi.org/10.1016/S0169-409X(01)00239-3
  4. B. Wang, W. Zhu, Y. Zhang, Z. Yang, and J. Ding, React. Funct. Polym., 66, 509 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.10.003
  5. G. Pitarresi, F. Saiano, G. Cavallaro, D. Mandracchia, and F. S. Palumbo, Int. J. Pharm., 335, 130 (2007). https://doi.org/10.1016/j.ijpharm.2006.11.012
  6. L. S. Nair and C. T. Laurencin, Prog. Polym. Sci., 32, 762 (2007) . https://doi.org/10.1016/j.progpolymsci.2007.05.017
  7. S. Y. Kim and H. Y. Kim, The Korean Journal of Rheology, 5, 1 (1993).
  8. P. Gunatillake, R. Mayadunne, and R. Adhikari, Biotechnol. Annu. Rev., 12, 301 (2006). https://doi.org/10.1016/S1387-2656(06)12009-8
  9. B. Gupta, N. Revagade, and J. S. Hilborn, Prog. Polym. Sci., 32, 455 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.005
  10. T. K. Kim, J. J. Yoon, D. S. Lee, and T. G. Park, Biomaterials, 27, 152 (2006). https://doi.org/10.1016/j.biomaterials.2005.05.081
  11. P. B. Maurus and C. C. Kaeding, Oper. Tech. Sports Med., 12, 158 (2004). https://doi.org/10.1053/j.otsm.2004.07.015
  12. S. J. Im, Y. M. Choi, E. Subramanyam, K. Park, and K. M. Huh, Macromol. Res., 15, 7 (2007).
  13. R. F. Storey, S. C. Warren, C. J. Allison, and A. D. Puckett, Polymer, 38, 6295 (1997). https://doi.org/10.1016/S0032-3861(97)00208-5
  14. Z. Ge, X. Zhang, J. Dai, W. Li, and Y. Luo, Eur. Polym. J., 45, 530 (2009). https://doi.org/10.1016/j.eurpolymj.2008.11.008
  15. H. Zhang, Y. He, S. Li, and X. Liu, Polym. Degrad. Stabil., 88, 309 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.11.005
  16. J. Heller, J. Barr, S. Y. Ng, K. S. Abdellauoi, and R. Gurny, Adv. Drug Deliv. Rev., 54, 1015 (2002). https://doi.org/10.1016/S0169-409X(02)00055-8
  17. M. A. Attawia, K. E. Uhrich, E. Botchwey, R. Langer, and C. T. Laurencin, J. Orthop. Res., 14, 10 (1995).
  18. C. Vauthier, C. Dubernet, C. Chauvierre, I. Brigger, and P. Couvreur, J. Control. Release, 93, 151 (2003). https://doi.org/10.1016/j.jconrel.2003.08.005
  19. M. D. Timmer, C. G. Ambrose, and A. G. Mikos, Biomaterials, 24, 571 (2003). https://doi.org/10.1016/S0142-9612(02)00368-X
  20. C. Vauthier, C. Dubernet, E. Fattal, H. Pinto-Alphandary, and P. Couvreur, Adv. Drug Deliv. Rev., 55, 519 (2003). https://doi.org/10.1016/S0169-409X(03)00041-3
  21. S. Lakshmi, D. S. Katti, and C. T. Laurencin, Adv. Drug Deliv. Rev., 55, 467 (2003). https://doi.org/10.1016/S0169-409X(03)00039-5
  22. S. Penczek, J. Pretula, and K. Kaluzynski, Biomacromolecules, 6, 5 (2005).
  23. J. H. Jeong, D. W. Lim, D. K. Han, and T. G. Park, Colloids Surf. B: Biointerfaces, 18, 371 (2000). https://doi.org/10.1016/S0927-7765(99)00162-9
  24. C. Liu et aI., Colloids Surf. A: Physicochem. Eng. Aspects, 302, 430 (2007). https://doi.org/10.1016/j.colsurfa.2007.03.006
  25. X. J. Loh, K. B. Colin Sng, and J. Li, Biomaterials, 29, 3185 (2008) . https://doi.org/10.1016/j.biomaterials.2008.04.015
  26. S. Zhou, X. Deng, and H. Yang, Biomaterials, 24, 3563 (2003) . https://doi.org/10.1016/S0142-9612(03)00207-2
  27. C. G. Moth, W. S. Drumond, and S. H. Wang, Thermochim. Acta, 445, 61 (2006). https://doi.org/10.1016/j.tca.2006.01.001
  28. S. Duvvuri, K. G. Janoria, and A. K. Mitra, J. Control. Release, 108, 282 (2005). https://doi.org/10.1016/j.jconrel.2005.09.002
  29. M. Qiao, D. Chen, X. Ma, and Y. Liu, Int. J. Pharm., 294, 103 (2005). https://doi.org/10.1016/j.ijpharm.2005.01.017
  30. N. M. O'Brien, Trauma., 7, 7 (2005).
  31. K. F. Kobus, J. Plast. Reconstr. Aesthet. Surg., 60, 414 (2007). https://doi.org/10.1016/j.bjps.2006.01.053
  32. C. G. Neumann, Plast. Reconstr. Surg., 19, 7 (1957).
  33. K. G. Wiese, D. E. H. Heinemann, D. Ostermeier, and J. H. Peters, J. Biomed Mater. Res., 54, 179 (2001). https://doi.org/10.1002/1097-4636(200102)54:2<179::AID-JBM4>3.0.CO;2-C
  34. P. M. Chevray, Breast Dis.: A Year Book Quarterly, 16, 200 (2005).
  35. K. K. P. T. A. Khan, and H. S. Ch'ng, J. Pharm. Pharm. Sci., 3, 9 (2000).
  36. ISO10993-12 (2007).
  37. ISO10993-6 (2007).
  38. A. K. Azab et aI., J. Biomed Mater. Res. Part A, 83A, 414 (2007). https://doi.org/10.1002/jbm.a.31256
  39. E. A. E. V. Tienhoven, D. Korbee, L. Schipper, H. W. Verharen, and W. H. D. Jong, J. Biomed. Mater. Res. Part A, 78A, 175 (2006). https://doi.org/10.1002/jbm.a.30679
  40. K. Fu, D. W. Pack, A. M. Klibanov, and R. Langer, Pharm. Res., 17, 7 (2000). https://doi.org/10.1023/A:1007514121527
  41. J. M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, 1992.
  42. Z. Min, H. Svensson, and P. Svedman, Annals of Plastic Surgery, 21, 6 (1988).
  43. K. A. Aamer, H. Sardinha, S. R. Bhatia, and G. N. Tew, Biomaterials, 25, 1087 (2004). https://doi.org/10.1016/S0142-9612(03)00632-X
  44. S. Chen, R. Pieper, D. C. Webster, and J. Singh, Int. J. Pharm., 288, 207 (2005). https://doi.org/10.1016/j.ijpharm.2004.09.026