제어 가능한 전송 영점을 갖는 CRLH 전송 선로

Composite Right/Left Handed(CRLH) Transmission Line with Controllable Transmission Zeros

이 자 현 · 김 경 근 · 임 영 석
Jahyeon Lee · Kyoungkeun Kim · Yeongseog Lim

요 약

본 논문에서는 제어 가능한 전송 영점을 갖는 새로운 Composite Right/Left Handed(CRLH) 전송 선로가 제안되었다. 제안된 CRLH 전송 선로의 단위 셀은 MIM 형태의 캐퍼시터와 마이크로스트립 스타터 인덕터와 co-planar waveguide(CPW) 인덕터로 구성되어 있다. 또한 제안된 전송 선로는 각각의 단위 셀의 MIM 캐퍼시터와 마이크로스트립 스타터 인덕터에서 발생하는 전자기 결합 성분에 의해 차단 대역에 두 개의 전송 영점이 발생한다. 제안된 전송 영점을 갖는 CRLH 전송 선로의 응용으로 UWB 시스템을 위한 광대역 통과 필터를 설계 및 제작하였다. 측정 결과, 통과 대역의 하측과 상측에 전송 영점이 발생하는 것을 확인하였으며, 대역 통과 필터의 극한 구조를 제한한 크기는 8 mm×8 mm으로 $\lambda_{g}/4$ 이하의 전기적 크기를 갖는다.

Abstract

In this paper, a novel CRLH-TL unit cell with controllable transmission zeros was proposed. Proposed composite right/left handed transmission line(CRLH-TL) unit cell is implemented in the form of the metal-insulator-metal(MIM) capacitors, the microstrip stub inductors, and the co-planar waveguide(CPW) inductor. And this proposed CRLH-TL generates two transmission zeros in lower/upper passband by the effort of electromagnetic couplings between each MIM capacitors and microstrip stub inductors. Using this proposed CRLH-TL, broad bandpass filter for UWB system was designed and fabricated. The measured results reveal that the two transmission zeros are observed in lower/upper passband and the overall size of the filter, excluding the feed line is about 8 mm×8 mm, less then $\lambda_{g}/4$ on electric size.

Key words : Metamaterial, Transmission Zero, CRLH

I. 서 론

최근에 일반적인 매경괴는 달리 유전율과 투자율 이음의 값을 갖는 메타 물질(metamaterial)의 새로운 물질 특성을 이용한 다양한 연구가 진행되고 있다. 메타 물질의 새로운 물리적 특성을 응용하면 성능이 비약적으로 향상되면서 소 형화된 초고주파 소자를 개발할 수 있다. 메타 물질은 1967년 러시아 과학자인 V. Veselago에 의해 자연 상에 존재하지 않는 음의 유전율 및 투자율을 갖는 물질로 이론적으로 제안되었으며[1], 1996년 J. B. Pendry와 D. R. Smithe에 의해 실험적으로 검증되었 다[2-4].

이후에 Itoh와 Caloz에 의해 기존 전송 선로의 등

[2] 전남대학교 전자컴퓨터공학과(Department of Electronics and Computer Engineering, Chonnam National University)
[4] 교 신 저 자 : 임영석(e-mail : limys@chonnam.ac.kr)
가 모델에 생대성 원리를 이용하여 메타 물질 전송 선로에 대하여 희로 모델링이 되었다[4]. 이를 계기로 평면 타임의 1차원 CRLH 전송 선로는 제작하기 수월하고 폭넓은 응용 분야를 갖기 때문에 대역 동과/저지 필터, 광대역 필터, 결합기, backward 안테나, 공진기 등의 여러 고주파 수소에 응용 연구가 진행되었다[4]-[13].

일반적인 CRLH 전송 선로에서 인터디지털 채널로서의 단락 스트브를 이용한 구조, 버섯 구조, SRR 을 이용한 구조 등 여러 가지 타임의 CRLH 전송 선로가 연구 개발되었다[4]-[13]. 그러나 위와 같은 CRLH 전송 선로의 경우, 직렬 커피셔트스를 구현하기 위한 간 채널과 인터디지털 채널로서는 큰 값의 직렬 커피셔트스를 얻기 위한 구조로 적절히 못만된다. 인터디지털부의 충분한 커피셔트스를 얻기 위해서는 매우 많은 폰지(MIM)의 수와 좁은 평간격을 구현해야 하는데 기술적인 어려움이 따르며, 실제에 매우 복잡한 설계 과정을 통해 원하는 커피셔트스 값을 구할 수 있으며, RH 전송 선로의 폰지와 인터디지털부의 폰지 동일하지 않아 불연속 부분에 의한 손실 또한 감수할 수밖에 없다.

본 논문에서는 metal-insulator-metal(MIM) 채널 및 마이크로스트립과 CPW 구조의 인터디지를 이용하여 새로운 CRLH 전송 선로를 제안한다. MIM 채널로서는 인터디지털 채널과 비교하여 단위 길이 당 많은 양의 커피셔트스를 구현할 수 있어 크기를 더욱 소형화 할 수 있으며, 중간 소자로 해석하여 얻어지는 근사화된 수식을 이용하여 설계를 할 수 있기 때문에 설계 시간을 단축할 수 있다.

제안된 CRLH 전송 선로의 응용으로써 차단 대역에 제어 가능한 전송 영점을 갖는 ultra wide band (UWB)를 통과 대역으로 하는 광대역 통과 필터가 설계되었다. 저지 대역에서 추가적으로 발생되는 전송 영점을 통과 대역의 바깥 부분에서 스파트 특성 을 향상시키고 차단 대역에서 높은 감쇠 특성을 내는 데 매우 유용하며, 모의실험과 제작 및 측정을 통해 확인하였다.

II. CRLH 전송 선로

2.1 일반적인 CRLH 전송 선로

그림 1. 기존의 CRLH 전송 선로의 등가회로

Fig. 1. Equivalent circuit of conventional CRLH-TH unit cell.

그림 1은 기존의 CRLH 전송 선로의 등가회로이다. 손실이 없는 기존의 비대칭 CRLH 전송 선로의 입출력 임피던스를 갖게 하기 위한 대칭형 형태로 기존의 비대칭 CRLH 전송 선로와 같은 주파수 응답 특성을 갖는다. CRLH 전송 선로는 RH 성분의 단위 길이당 직렬 인덕턴스(\(L_R\)), 단위 길이당 병렬 커피셔트스(\(C_R\))와 LH 성분의 단위 길이 곱 직렬 인덕턴스(\(L_L\))로 구성된다. 전송 선로가 무손실임을 가정하고 전송 선로 이론을 적용하면 전송 선로의 전파 상수는 \(\gamma = j\beta = \sqrt{(Z'Y')}\)로 얻어진다. 여기서 \(Z'\)와 \(Y'\)는 전송 선로의 단위 길이당 임피던스와 어드미터스이다. 전송 선로의 투자율과 유전율은 식 (1)을 이용해 구할 수 있다[4].

\[
\begin{align*}
\mu &= \frac{Z}{j\omega} = L_R \frac{1}{\omega^2 C_L} \\
\varepsilon &= \frac{Y}{j\omega} = C_L \frac{1}{\omega^2 L_L}
\end{align*}
\]

(1)

식 (1)에 의해서 특정 주파수 대역에서 CRLH 전송 선로의 투자율과 유전율은 동시에 음의 값을 갖게 되므로 음의 전파 상수 값을 갖는 등과 대역이 형성된다. 또한, CRLH 전송 선로는 영이 아닌 주파수에서 유전율이나 투자율이 영이 되므로 전파 상수가 영이 되는 무한 장파 특성을 갖게 된다. CRLH 전송 선로의 특성을 확인하기 위한 전송 선로의 전파 상수는 주기 구조 이론을 적용하여 식 (2)와 같이 구할 수 있다[16].

\[
\begin{align*}
\beta &= \cos^{-1} \left(1 + \frac{Z'Y'}{2} \right) \\
\gamma &= \frac{1}{d} \cos^{-1} \left(1 - \frac{1}{2} \left[\frac{f_c L_R}{f_c^2} + \frac{f_c C_L}{f_c^2} - \left(\frac{f_c^2}{f_R^2} + \frac{f_c^2}{f_R^2} \right) \right] \right)
\end{align*}
\]

(2)
여기서

\[
f_R = \frac{1}{2\pi\sqrt{L_R C_R}}, \quad f_L = \frac{1}{2\pi\sqrt{L_L C_L}},
\]

\[
f_m = \frac{1}{2\pi\sqrt{L_R C_L}}, \quad f_m = \frac{1}{2\pi\sqrt{L_L C_R}}
\]

이며, \(\beta\)는 전파 상수, \(d\)는 단위 셀의 길이이다. \(C_R, L_R, C_L, L_L\)은 직렬 캐패시턴스, 병렬 인덕턴스, 직렬 캐패시턴스, 병렬 인덕턴스이며, 이 값들은 앞의 동가화로의 \(C_R, L_R, C_L, L_L\) 값에 단위 셀의 길이를 곱하거나 나눈 값으로 나타낼 수 있다.

2.2 CRLH 전송 선로를 이용한 대역 통과 필터

CRLH 전송 선로의 주파수에 따른 동작 특성을 분석해 보면 다음과 같다. 저주파에서는 \(L_R\)은 단락되고 \(C_R\)은 개방되었다고 간주할 수 있고, 동가화로가 직렬 캐패시턴스 \(C_L\)과 병렬 인덕턴스 \(L_R\)로 구성된 LH 회로로 볼 수 있다. 자연적으로 LH 회로는 차단 주파수 \(f_R\)을 갖는 고역 통과 형태의 주파수 응답을 보인다. 마찬가지로 고주파에서는 \(C_R\)은 개방되고 \(L_R\)은 단락되었다고 간주할 수 있으며, 직렬 인덕턴스 \(L_L\)과 병렬 캐패시턴스 \(C_L\)로 구성된 RH 회로로 볼 수 있다. RH 회로는 차단 주파수 \(f_R\)을 갖는 저역 통과 형태의 주파수 응답을 보인다. 즉, CRLH 전송 선로는 저주파에서\(\)는 LH로 동작하고 고주파에서는 RH로 동작하여 자연적으로 대역 통과 형태의 주파수 응답을 보이게 된다. CRLH 전송 선로의 직렬 공진점 \(f_a\)와 병렬 공진점 \(f_m\)가 같을 경우 균형 조건이 하며, 균형 조건일 때 다음의 식 (3)을 통해 차단 주파수들을 구할 수 있다.

\[
f_{cr} = f_R \left(1 + \sqrt{1 + \frac{f_L}{f_R}}\right)
\]

\[
f_{cl} = f_R \left(1 - \sqrt{1 + \frac{f_L}{f_R}}\right)
\]

(3)

\(f_a\)와 \(f_m\)가 다를 경우 불균형 조건이라 하며, 불균형 조건일 경우에는 통과 대역 \(f_a\)와 \(f_m\) 사이에서 값의 상수 \(\alpha\)가 양수로서 차단 대역이 형성된다. 또한 통과 대역 두 개의 공진점이 형성된다.

식 (3)을 이용하여 UWB 대역 (3.1~10.5 GHz)을 전송 대역에 포함되도록 CRLH 선로를 설계하였다. 표 1에 제한되어 얻어진 소자 값이 나타내어졌다. \(Z_n\)는

<table>
<thead>
<tr>
<th>Table 1. Parameter values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{cl}) (GHz)</td>
</tr>
<tr>
<td>(L_L) (nH)</td>
</tr>
<tr>
<td>(f_{cr}) (GHz)</td>
</tr>
<tr>
<td>(L_R) (nH)</td>
</tr>
<tr>
<td>(f_a) (GHz)</td>
</tr>
<tr>
<td>(C_L) (pF)</td>
</tr>
<tr>
<td>(Z_n) (Ohm)</td>
</tr>
<tr>
<td>(C_R) (pF)</td>
</tr>
</tbody>
</table>

그림 2. 시뮬레이션 결과
Fig. 2. Simulation result.

CRLH 전송 선로의 특성 음파로스로 균형 조건일 경우 \(Z_n = Z' / \sqrt{\gamma}\)이다.

그림 2(a)에 1셀 광대역 통과 필터의 주파수 응답을 균형 조건과 불균형 조건을 비교하여 도시하였다. 불균형 조건은 \(C_L\)만을 0.65 pF로 변경하여 \(f_m = 6.5\) GHz, \(f_a = 6.24\) GHz로 불균형 조건을 이루게 하였다.
통상적으로 CRLH 전송 선로를 구성하는 셀의 수가 2 3개 이하로 적을 경우 통과 대역 경계 부분의 주파수 응답이 평탄하기 때문에 차단 주파수가 명확히 정의되기 어려우며, 셀의 수가 3 5개 이상일 경우에 차단 주파수들이 명확히 정의될 수 있다. 불균형 조건의 차단 대역 또한 셀의 개수가 적을 경우 명확히 나타나지 않는다. 균형 조건에 대비하여 통과 대역에 두 개의 극점이 발생하여 반사 손실 특성에 특성점을 앞 수 있다. 그림 2(b)는 분산 다이어그램을 비교한 그래프이다. 회로 시뮬레이션 결과, 중심 주파수 6.5 GHz를 기준으로 낮은 주파수 대역은 LH로 동작하여 전파 상수가 음의 값을 가지며, 높은 주파수 대역은 RH로 동작하여 전파 상수가 양의 값을 갖는다. 또한 CRLH 전송 선로를 구성하는 셀의 수가 1, 5, 25로 많아질수록 이론치에 가까운 분산 특성을 보임을 알 수 있다.

2.3 제어 가능한 전송 영점을 갖는 CRLH 전송 선로 단위 셀

그림 3은 제한된 제어 가능한 전송 영점을 갖는 CRLH 전송 선로 단위 셀로 구성된 등가회로이다. 점선으로 표기한 \(L_M \)과 \(C_M \)에 의해 각각 하층과 상층 차단 대역에서 전송 영점이 발생한다. 회로 해석을 위하여 그림 5의 등가회로를 점선으로 표기한 회로와 실선으로 표기한 회로로 나눌 수 있고, 네트워크가 병렬 연결되어 있는 경우, 전체 네트워크의 어드미탄스 행렬 \(\text{Y} = \text{Y}_{21} + \text{Y}_{M1} \)의 성분 중 \(\text{Y}_{M1} \)은 0일 경우 전체 네트워크의 \(S_{21} = 0 \)을 만족하게 되어 전송 영점이 발생하게 된다. 여기서 \(\text{Y}_{21} \)은 실선으로 표기한 회로의 어드미탄스 성분이며, \(\text{Y}_{M1} \)은 점선으로 표기한 회로의 어드미탄스이다. 각각 어드미탄스 행렬의 성분은 ABCD 파라미터로부터 다음과 같이 구해진다. 실선으로 표기한 회로의 어드미탄스 성분

\[
\text{Y}_{21} = \frac{j\omega C_L}{1 - \omega^2 L_R C_L} \quad (4a)
\]

이며, 점선으로 표기된 회로의 어드미탄스 성분

\[
\text{Y}_{M1} = \frac{1 - \omega^2 L_M C_M}{j\omega L_M} \quad (4b)
\]

이다.

그림 4에 \(L_M \)과 \(C_M \)의 변화에 따른 \(\text{Y}_{21} \)과 \(\text{Y}_{M1} \)를 나타내었다. \(\text{Y}_{21} \)과 \(\text{Y}_{M1} \) 그래프가 교차하는 주파수에서 \(\text{Y}_{21} = -\text{Y}_{M1} \)을 만족하게 되어 전송 영점이 발생한다. \(L_M \)은 상층 대역의 전송 영점의 위치에는 거의 영향을 미치지 않는다.

![그림 3. 제한된 제어 가능한 전송 영점을 갖는 CRLH 전송 선로 단위 구조의 등가회로](image1)

Fig. 3. Equivalent circuit of the proposed CRLH-TL unit cell with controllable transmission zeros.

![그림 4. 어드미탄스 그래프](image2)

Fig. 4. Admittance graph.
제어 가능한 전송 영점을 갖는 CRLH 전송 선로 구조

그림 5. S-파라미터
Fig. 5. S-parameter.

그림 6. 제안된 제어 가능한 전송 영점을 갖는 CRLH 전송 선로의 단위 구조
Fig. 6. Unit structure of the proposed CRLH-TL with controllable transmission zeros.

그림 7. 각각 구조의 등가회로
Fig. 7. Equivalent circuits of each structures.

문 도체 사이에서 발생하는 전기결합에 의한 커패시턴스로 구현된다. 단위 셀의 소자값은 접종 소자로

III. 제어 가능한 전송 영점을 갖는 CRLH 전송 선로 구조

그림 6은 제안된 제어 가능한 전송 영점을 갖는 CRLH 전송 선로 단위 셀의 구조이다. 단위 셀은 직렬 MIM 커패시터, 직렬 CPW 인덕터, 병렬 마이크로스트립 단락 스타브 인덕터로 구성된다. 그림 9는 각각 구조의 등가회로이다. 제안된 구조의 옵션의 유전율을 유도하는 병렬 인덕턴스는 마이크로스트립 단락 스타브 인덕터에서 발생된다. 또한, 옵의 투자율은 접지면상에 CPW 선로와 신호선과 연결된 면

문 도체와 전기적 결합하여 직렬 MIM 커패시터에 의해 유도된다. 그림 3의 전송 영점을 발생하게 하는 L_M과 C_M은 마이크로스트립 단락 스타브에서 발생되는 자기유도된 인덕턴스와 신호선에 연결된 평
V. 결 론
본 논문에서는 MIM 케퍼시터 및 마이크로스트립
과 CPW 구조의 인덕터로 구성된 제어 가능한 전송
영점을 갖는 새로운 CRLH 전송 선로를 제안하였다.
기존의 CRLH 전송 선로에 비해 적절 케퍼시터로
MIM 구조를 사용함으로써 기존에 대비하여 비교적
간단한 설계 과정을 통해 설계가 가능하다. 또한 차
단 대역에서 발생하는 전송 영점의 위치를 계산할
수 있음을 보였으며, 이를 이용하여 차단 대역에서
추가적인 전송 영점을 갖는 UWB 대역 통과 필터를
설계 및 제작을 하였다. 여러 개의 제안된 CRLH 전
송 선로 설계를 이용하여 필터를 설계시 각각의 설계
에서 발생하는 전송 영점의 위치를 다르게 설계한다면
저지 대역에서 추가적으로 발생되는 전송 영점은 통
과 대역의 바깥 부분에서 스타트 특성을 향상시키
고, 차단 대역에서 높은 감쇠 특성을 내는데 매우 유
용할 것으로 보인다.

참 고 문 현

[1] V. G. Veselago, "The electrodynamics of substances
with simultaneously negative value of permittivity
and permeability", Soviet Physics Uspekhi, vol. 10,
no. 4, pp. 509-514, 1986.
[2] J. B. Pendry et al., "Low frequency plasmons in
thin-wire structures", Journal of Physics:Condens.
"Magnetism from conductors and enhanced nonlin-
ear phemonena", IEEE Trans. Microwave Theory
Transmission Line Theory and Microwave Applica-
의 마이크로파 부품과 안테나 개발에의 적용기
술", 한국전자과학회지 전자파기술, 20(2), pp 59-
67, 2009년 3월.
[6] 김영, 윤영철, "초고주파 부품에 활용되는 meta-
material", 한국전자과학회지 전자파기술, 20(2),

이 자 현

2007년 2월: 전남대학교 전자컴퓨터정보통신공학부 전자공학전공 (공학사)
2009년 2월: 전남대학교 전자컴퓨터공학과 (공학석사)
2009년 3월~현재: 전남대학교 전자컴퓨터공학과 박사과정
[주 관심분야] 초고주파 회로 설계, RF 소자 설계

김 경 근

2005년 2월: 전남대학교 정보통신공학부 전자공학전공 (공학사)
2007년 8월: 전남대학교 전자정보통신공학과 (공학석사)
2007년 9월~현재: 전남대학교 전자컴퓨터공학과 박사과정
[주 관심분야] 전자과 수치 해석,
임 영석

1980년 2월: 서울대학교 전자공학과 (공학사)
1982년 2월: 서울대학교 전자공학과 (공학석사)
1989년 2월: 전북대학교 전자공학과 (공학부사)
1984년 9월~현재: 전남대학교 전자

 컴퓨터공학부 교수

[주 관심분야] 전자파 수치 해석, 초고주파회로 설계 및 해석, RF 소자 설계, 안테나