Dependence of Dielectric Layer and Electrolyte on the Driving Performance of Electrowetting-Based Liquid Lens

  • Lee, June-Kyoo (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Park, Kyung-Woo (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Hak-Rin (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kong, Seong-Ho (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • Received : 2010.03.24
  • Accepted : 2010.06.15
  • Published : 2010.06.30

Abstract

This paper presents the effects of a dielectric layer and an electrolyte on the driving performance of an electrowetting on dielectric (EWOD)-based liquid lens. The range of tunable focal length of the EWOD-based liquid lens was highly dependent on the conditions of the dielectric layer, which included an inorganic oxide layer and an organic hydrophobic layer. Moreover, experiments on the physical and optical durability of electrolyte by varying temperature conditions, were conducted and their results were discussed. Finally, the lens with a truncated-pyramid silicon cavity having a sidewall dielectrics and electrode was fabricated by anisotropic etching and other micro-electromechanical systems (MEMS) technologies in order to demonstrate its performance. The lens with $0.6-{\mu}m$-thick $SiO_2$ layer and 10 wt% LiCl-electrolyte exhibited brilliant focal-length tunability from infinity to 3.19 mm.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. B. Hendriks and S. Kuiper, IEEE Spectr. 41, 32 (2004).
  2. K. -S. Yun, I. -J. Cho, J. -U. Bu, C. -J. Kim, and E. Yoon, J. Microelectromech. Syst. 11, 454 (2002). https://doi.org/10.1109/JMEMS.2002.803286
  3. P. Y. Paik, V. K. Pamula, and K. Chakrabarty, IEEE Des. Test Comput. 25, 372 (2008). https://doi.org/10.1109/MDT.2008.87
  4. R. A. Hayes and B. J. Feenstra, Nature 425, 383 (2003) https://doi.org/10.1038/nature01988
  5. F. Mugele and J. -C. Baret, J. Phys. -Condes. Matter 17, R705 (2005). https://doi.org/10.1088/0953-8984/17/28/R01
  6. H. Moon, S. K. Cho, R. L. Garrell, and C. -J. Kim, J. Appl. Phys. 92, 4080 (2002). https://doi.org/10.1063/1.1504171
  7. S. Berry, J. Kedzierski, and B. Abedian, J. Colloid Interface Sci. 303, 517 (2006). https://doi.org/10.1016/j.jcis.2006.08.004
  8. A. Quinn, R. Sedev, and J. Ralston, J. Phys. Chem. B 107, 1163 (2003). https://doi.org/10.1021/jp0216326
  9. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000). https://doi.org/10.1007/s101890070029
  10. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004). https://doi.org/10.1063/1.1779954
  11. J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, and J. S. Suehle, IEEE Trans. Electron Devices 47, 121 (2000). https://doi.org/10.1109/16.817577
  12. Y. S. Nanayakkara, H. Moon, T. Payagala, A. B. Wijeratne, J. A. Crank, P. S. Sharma, and D. W. Armstrong, Anal. Chem. 80, 7690 (2008). https://doi.org/10.1021/ac8009802
  13. S. Xu, Y. J. Lin, and S. T. Wu, Opt. Express 17, 10499 (2009). https://doi.org/10.1364/OE.17.010499
  14. C. C. Cheng, and J. A. Yeh, Opt. Express. 15, 7140 (2007). https://doi.org/10.1364/OE.15.007140
  15. B. Berge, Nikkei Electronics 911, 129 (2005).