Xiang, Yueming

  • Received : 2009.09.23
  • Published : 2010.10.31


Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.


$\cal{TI}_n$-(pre)cover;$\cal{TF}_n$-preenvelope;n-TI-injective module;n-TI-flat module;weakly n-Gorenstein ring


  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg, 1974.
  2. L. Bican, R. El Bashir, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385–390.
  3. V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), no. 1, 72–76.
  4. F. C. Cheng and Z. Yi, Homological Dimensions of Rings, Guangxi Normal University Press, Guilin, 2000.
  5. N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470.
  6. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209.
  7. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, Berlin, Now York, 2000.
  8. D. J. Fieldhouse, Pure theories, Math. Ann. 184 (1969), 1–18.
  9. J. R. Garcia Rozas and B. Torrecillas, Relative injective covers, Comm. Algebra 22 (1994), no. 8, 2925–2940.
  10. L. X. Mao, $\Pi$-coherent dimensions and $\Pi$-coherent rings, J. Korean Math. Soc. 44 (2007), no. 3, 719–731.
  11. L. X. Mao and N. Q. Ding, FI-injective and FI-flat modules, J. Algebra 309 (2007), no. 1, 367–385.
  12. L. X. Mao and N. Q. Ding, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208 (2007), no. 2, 635–646.
  13. J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), no. 3, 899–912.
  14. J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
  15. M. Y. Wang, Some studies on $\Pi$-coherent rings, Proc. Amer. Math. Soc. 119 (1993), no. 1, 71–76.
  16. J. Z. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.
  17. Y. M. Xiang, TI-injective and TI-flat modules, J. Nat. Sci. Hunan Norm. Univ., preprint.
  18. Y. M. Xiang, TI-injective and TI-flat modules, FGT–injective dimensions of ¦–coherent rings and almost excellent extension, Proc. Indian Acad. Sci. (Math. Sci.) 120 (2010), no. 2, 149–161.