Adhesive Properties of Lactobacillus brevis FSB-1 In Vivo

  • Kim, Seong-Yeong (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Ho (Department of Food Science and Biotechnology, Kyonggi University)
  • Received : 2010.03.16
  • Accepted : 2010.05.26
  • Published : 2010.08.31


This study was conducted to evaluate the in vivo gastrointestinal survival and adhesive properties of orally administered Lactobacillus brevis FSB-1. ELISA conducted using polyclonal antibodies specific for L. brevis FSB-1 was able to detect the organism in feces; therefore, we used ELISA to determine the concentration of lactic acid bacteria in feces collected from Wister rats that had been administered $10^{10}$ cells/rat/d orally for 20 d. The mean recovery of L. brevis FSB-1 was approximately $10^{7.22}$ cells/g of wet feces during the oral administration period, and $10^{7.50}$ and $10^{7.46}$ at 8 and 10 d after the end of oral administration, respectively. These results indicate that L. brevis FSB-1 was able to survive in the gastrointestinal tract of rats, and that it had a high adhesive property in rat colons.


  1. Bouh, K. C. S. and Mittal, K. R. (1999) Serological characterization of Actinobacillus pleuropneumoniae serotype 2 strains by using polyclonal and monoclonal antibodies. Vet. Microbiol. 66, 67-80.
  2. Coconnier, M. H., Klaenhammer, T. R., Kerneis, S., Bernet, M. F., and Servin, A. L. (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microbiol. 58, 2034-2039.
  3. Collins, J. K., Thornton, G., and Sullivan, G. O. (1998) Selection of probiotic strains for human applications. Int. Dairy J. 8, 487-490.
  4. Elina, R., Erja, M., Maria, S., Merja, R. K., Johannes, A., and Airi, P. (2003) Probiotic and milk technological properties of Lactobacillus brevis. Int. J. Food Microbiol. 83, 63-74.
  5. Gill, H. S. (2003) Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Prac. Res. Clin. Gastroenterol. 17, 755-773.
  6. Goldin, B. R. (1998) Health benefits of probiotics. Brit. J. Nutr. 80, 203-207.
  7. Hay, F. C. and Westwood, O. M. R. (2002a) Immunological manipulations in vivo. In: Practical immunology. 4th ed, Blackwell Scientific Publication, Oxford, pp. 326-333.
  8. Hay, F. C. and Westwood, O. M. R. (2002b) Monoclonal antibodies: Production, purification and enzymatic fragmentation. In: Practical immunology. 4th ed, Blackwell Scientific Publication, Oxford, pp. 40-70.
  9. Huang, Y., Kotula, L., and Adams, M. C. (2003) The in vivo assessment of safety and gastrointestinal survival of an orally administered novel probiotic, Propionibacterium jensenii 702, in a male Wistar rat model. Food Chem. Toxicol. 41, 1781-1787.
  10. Hynonen, U., Westerlund-Wikstrom, B., Palva, A. and Korhonen, T. K. (2002) Identification by flagellum display of an epithelial cell- and fibronectin- binding function in the Slp A surface protein of Lactobacillus brevis. J. Bacteriol. 184, 3360-3367.
  11. Jakava-Viljanen, M., Avall-Jaaskelainen, S., Messner, P., Sleytr, U. B. and Palva, A. (2002) Isolation of three new surface layer protein genes (slp) from Lactobacillus brevis ATCC 14869 and characterization of the change in their expression under aerated and anaerobic conditions. J. Bacteriol. 184, 6786-6795.
  12. Jung, C. M. and Kang, K. H. (1997) Industrial utilization and future prospect of lactic acid bacteria. Bioindustrial News, Korea, pp. 16-22.
  13. Jung, M. J. (1997) Industrial application of lactic acid bacteria. Bioindustrial News, Korea, pp. 44-46.
  14. Kahala, M., Savijoki, K., and Palva, A. (1997) In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179, 284-286.
  15. Kandler, O. and Weiss, N. (1986) Regular, nonsporing grampositive rods. In: Bergey's manual of systematic bacteriololgy. Wiliams and Wilkins, Baltimore, MD, Vol. 2, pp. 1208-1260.
  16. Kim, M. L. and Slauch, J. M. (1999) Effect of acetylation (O-factor 5) on the polyclonal antibody response to Salmonella typhimurium O-antigen. FEMS Immunol. Med. Microbiol. 26, 83-92.
  17. Kim, S. Y., Shin, K. W., and Lee, H. (2004a) Screening of lactic acid bacteria with potent adhesive property in human colon using colonic mucin-binding assay. Korean J. Food Sci. Technol. 36, 959-967.
  18. Kim, S. Y., Shin, K. W., and Lee, H. (2004b) Immunopotentiating activities by cellular components of Lactobacillus brevis FSB-1. Korean J. Food Sci. Nutr. 33, 1552-1559.
  19. Kim, T. H. (1994) Development of therapeutic product using lactic acid bacteria. Bioindustrial News, Korea, pp. 28-35.
  20. Kishi, A., Kazuko, U., Matsubara, Y., Okuda, C., and Kishida, T. (1996) Effect of oral administration of Lactobacillus brevis subsp. Coagulans on interferon-$\alpha$ producing capacity of humans. J. Am. Coll. Nutr. 15, 408-412.
  21. Klaenhammer, T. R. and Kullen, M. J. (1999) Selection and design of probiotics. Int. J. Food Microbiol. 50, 45-57.
  22. Lee, Y. K. and Salminen, S. (1995) The coming of age of probiotics. Trends Food Sci. Technol. 6, 241-245.
  23. Maassen, C. B. M., Holten-Neelen, C. V., Balk, F., Bak-Glashouwer, M-J. H. D., Leer, R. J., Laman, J. D., Boersma, W. J. A., and Claassen, E. (2000) Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18, 2613-2623.
  24. Nardi, R. D., Santos, A. R. M., Carvalho, M. A. R., Farias, L. M., Benchetrit, L. C., and Nicoli, J. R. (1999) Antagosism against anaerobic and facultative bacteria through a diffusible inhibitory compound produced by a Lactobacillus sp. isolated from the rat fecal microbiota. Anaerobe 5, 409-411.
  25. Ouwehand, A. C., Kirjavainen, P. V., Shortt, C., and Salminen, S. (1999a) Probiotics: mechanisms and established effects. Int. Dairy J. 9, 43-52.
  26. Ouwehand, A. C., Niemi, P., and Salminen, S. J. (1999b) The normal fecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol. Lett. 177, 35-38.
  27. Ouwehand, A. C., Tuomola, E. M., Tolkko, S., and Salminen, S. (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64, 119-126.
  28. Plant, L. J. and Conway, P. L. (2002) Adjuvant properties and colonization potential of adhering and non-adhering Lactobacillus spp. following oral administration to mice. FEMS Immunol. Med. Microbiol. 34, 105-111.
  29. Playfair, J. H. L. (1987) Immunology at a glance. 4th ed, Blackwell Scientific Publications, London, pp. 410-476.
  30. Pouwels, P. H., Leer, R. J., Shaw, M., Bak-Glashouwer, M-J. H., Tielen, F. D., Smit, E., Martinez, B., Jore, J., and Conway, P. L. (1998) Lactic acid bacteria as antigen delivery vehicles for oral immunization purpose. Int. J. Food Microbiol. 41, 155-167.
  31. Raamsdonk, M. V., Mei, H. C. V., Soet, J. J. D., Busscher, H. J., and Graaff, J. D. (1995) Effect of polyclonal and monoclonal antibodies on surface properties of Streptococcus sobrinus. Infect. Immun. 63, 1698-1702.
  32. Salminen, S., Ouwehand, A., Benno, Y., and Lee, Y. K. (1999) Probiotics: how should they be defined? Trends Food Sci. Technol. 10, 107-110.
  33. Saxelin, M., Pessi, T., and Salminen, S. (1995) Faecal recovery following oral administration of Lactobacillus strain GG (ACTT 53103) in gelatine capsules to healthy volunteers. Int. J. Food Microbiol. 25, 199-203.
  34. Sherwood, L. and Gorbach, M. D. (2000) Probiotics and gastrointestinal health. Am. J. Gastroenterol. 95, 2-4.
  35. Tuleu, C., Andrieux, C., Boy, P. and Chaumeil, J. C. (1999) Gastrointestinal transit of pellets in rats: effect of size and density. Int. J. Pharm. 180, 123-131.
  36. Voller, A., Bidwell, D. E., and Bartlett, A. (1976) Enzyme immunoassays in diagnostic medicine. Theory and practice. Bull. World Health Organ. 53, 55-65.
  37. Yuki, N., Watanabe, K., Mike, A., Tagami, Y., Tanaka, R., Ohwaki, M., and Morotomi, M. (1999) Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: selective isolation from feces and identification using monoclonal antibodies. Int. J. Food Microbiol. 48, 51-57.