Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM

AFM 기반 Pulse 를 이용한 전기화학적 가공

  • Lee, Jeong-Min (Dep. of Mechanical Design Engineering, Chosun Univ.) ;
  • Kim, Sun-Ho (Dep. of Mechanical Design Engineering, Chosun Univ.) ;
  • Park, Jeong-Woo (Dep. of Mechanical Design Engineering, Chosun Univ.)
  • 이정민 (조선대학교 기계설계공학과) ;
  • 김선호 (조선대학교 기계설계공학과) ;
  • 박정우 (조선대학교 기계설계공학과)
  • Received : 2010.05.13
  • Accepted : 2010.08.23
  • Published : 2010.11.01


In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.


Electrochemical Nanomachining;Oxidation;Scanning-Probe Lithography;AFM;Nanopatterning


Supported by : 한국학술진흥재단


  1. Binnig, G., Rohrer, H., Gerber, C. and Weibel E., 1982, “Tunneling Through a Controllable Vacuum Gap,” Appl. Phys., Lett. 40, pp. 178-180.
  2. Chen, C. J., 2008, Introduction to Scanning Tunneling Microscopy 2nd edn (Oxford: Oxford University Press).
  3. Bonnell, D. A., 2001, Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications 1st edn (New York: Wiley-VCH).
  4. Bai, C., 1999, Scanning Tunneling Microscopy and its Application 2nd edn (New York: Springer).
  5. Eigler, D. M. and Schweizer, E. K., 1990, Positioning Single Atoms with a Scanning Tunneling Microscope Nature, 344, pp. 524-526.
  6. Klink, C., Olesen, L., Besenbacher, F., Stensgaard, I., Laegsgaard, E. and Lang, N. D., 1993, Interaction of C with Ni(100)—atom-resolved studies of the clock reconstruction Phys. Rev., Lett. 71, pp. 4350-4353.
  7. Tersoff, J. and Hamann, D. R., 1983, Theory and Application for the Scanning Tunneling Microscope. Phys. Rev., Lett. 50, pp.1998-2001.
  8. Monnell, J. D., Stapleton, J. J., Dirk, S. M., Reinerth, W. A., Tour, J. M., Allara, D. L. and Weiss, P. S., 2005, Relative Conductances of Alkaneselenolate and Alkanethiolate Monolayers on Au{111} J. Phys., Chem. B 109, pp. 20343-20349.
  9. Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T .and Smalley, R. E., 1996, Nanotubes as Nanoprobes in Scanning Probe Microscopy Nature, 384, pp. 147-150.
  10. Morris, V. J., 1999, Atomic Force Microscopy for Biologists 1st edn (London: Imperial College Press).
  11. Bennewitz, R., Foster, A. S., Kantorovich, L. N., Bammerlin, M., Loppacher, C., Schar, S., Guggisberg, M., Meyer, E. and Shluger, A. L., 2000, Atomically Resolved Edges and Kinks of NaCl Islands on Cu(111): Experiment and Theory Phys., Rev. B 62 pp. 2074-2084.
  12. Hafner, J. H., Cheung, C. L. and Lieber, C. M., 1999, Growth of Nanotubes for Probe Microscopy Tips Nature, 398, pp. 761-762.
  13. Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L. and Lieber, C. M., 1998, Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology Nature, 394, pp. 52-55.
  14. Binnig, G., Quate, C. F. and Gerber, C., 1986, Atomic Force Microscope Phys. Rev., Lett. 56, pp. 930-933.
  15. Giessibl, F. J., 1995, Atomic-Resolution of the Silicon (111)-(7 × 7) Surface by Atomic-Force Microscopy Science, 267, pp. 68-71.
  16. Fukui, K., Onishi, H. and Iwasawa, Y., 1997, Atom-Resolved Image of the TiO (110) Surface by Noncontact Atomic Force Microscopy Phys. Rev., Lett. 79, pp. 4202-4205.
  17. Giessibl, F. J., 2003, Advances in Atomic Force Microscopy Rev. Mod. Phys., 75, pp. 949-983.
  18. Giessibl, F. J., Hembacher, S., Bielefeldt, H. and Mannhart, J., 2000, Subatomic Features on the Silicon (111)-(7 × 7) Surface Observed by Atomic Force Microscopy Science, 289, pp. 422-425.
  19. Vettiger, P. et al., 1999, Ultrahigh Density, High-Data-Rate NEMS-Based AFM Data Storage System Microelectron.Eng., 46, pp. 11-17.
  20. Vettiger, P. et al., 2002, The ‘Millipede’—Nanotechnology Entering Data Storage IEEE Trans. Nanotechnol., 1, pp. 39-55.
  21. Vettiger P., Despont, M., Drechsler, U., Durig, U., Haberle, W., Lutwyche, M. I., Rothuizen, H. E., Stutz, R., Widmer, R. and Binnig, G. K., 2000, The ‘Millipede’—More than one Thousand Tips for Future AFM Data Storage IBM J. Res.Dev., 44, pp. 323-340.
  22. Hong, S. H. and Mirkin, C. A., 2000, A Nanoplotter with Both Parallel and Serial Writing Capabilities Science, 288, pp. 1808-1811.
  23. Zhang, M., Bullen, D., Chung, S. W., Hong, S., Ryu, K. S., Fan, Z. F., Mirkin, C. A. and Liu, C., 2002, A MEMS Nanoplotter with High-Density Parallel Dip-pen Nanolithography Probe Arrays Nanotechnology, 13, p. 212.
  24. Salaita, K., Lee, S. W., Wang, X. F., Huang, L., Dellinger, T. M., Liu, C. and Mirkin, C. A., 2005, Sub-100nm, Centimeter-Scale, Parallel Dip-Pen Nanolithography Small, 1, pp. 940-945.
  25. Lenhert, S., Sun, P., Wang, Y. H., Fuchs, H. and Mirkin, C. A., 2007, Massively Parallel Dip-Pen Nanolithography of Heterogeneous Supported Phospholipid Multilayer Patterns Small, 3, pp. 71-75.
  26. Lee, S. W., Oh, B. K., Sanedrin, R. G., Salaita, K., Fujigaya, Tand. Mirkin. C. A., 2006, Biologically Active Protein Nanoarrays Generated Using Parallel Dip-Pen Nanolithography Adv. Mater., 18, pp. 1133-1136.
  27. Bullen, D., Chung, S. W., Wang, X. F., Zou, J., Mirkin, C. A. and Liu, C., 2004, Parallel Dip-Pen Nanolithography with Arrays of Individually Addressable Cantilevers Appl. Phys. Lett., 84, pp. 789-791.
  28. Salaita, K., Wang, Y. H., Fragala, J., Vega, R. A., Liu, C. and Mirkin, C. A., 2006, Massively Parallel Dip-Pen Nanolithography with 55000-Pen Two-Dimensional Arrays Angew. Chem., 45, pp. 7220-7223.
  29. Snow, E. S., Campbell, P. M., Buot, F. A., Park, D., Marrian, C. R. K. and Magno, R., Appl. Phys., Lett. 72, 3071 s1998d.
  30. Garcia, R., Calleja, M. and Rohrer, J. H., Appl. Phys., 86, 1898 s1999d.
  31. Cooper, E. B., Manalis, S. R., H. Fang, Dai, H., Matsumoto, K., Minne, S. C., Hunt, T. and Quate, C. F., Appl. Phys. Lett., 75, 3566 s1999d.
  32. Matsumoto, K., Gotoh, Y., Maeda, T., Dagata, J. A. and Harris, J. S., Appl. Phys. Lett., 76, 239 s2000d.
  33. Chien, F. S., Chou, Y.-C., Chen, T. T., Hsieh, W.-F., Chao, T. S. and Gwo, J. S., Appl. Phys., 89, 2465 s2001d.
  34. Bouchiat, V., Faucher, M., Thirion, C., Wernsdorfer, W., Fournier, T. and Pannetier, B., Appl. Phys., Lett. 79, 123 s2001d.
  35. Pellegrino, L., Pallecchi, I., Marré, D., Bellingeri, E. and Siri, A. S., Appl. Phys., Lett. 81, 3849 s2002d.
  36. Dorn, A., Sigrist, M., Fuhrer, A., Ihn, T., Heinzel, T., Ensslin, K., Wegscheider, W. and Bichler, M., Appl. Phys., Lett. 80, 252 s2002d.
  37. Okada, Y., Iuchi, Y., Kawabe, M. and Harris Jr., J. S., Appl. Phys., Lett. 88, 1136 s2000d.
  38. Chien, F. S. S., Chang, J. W., Lin, S. W., Chou, Y. C., Chen, T. T., Gwo, S., Chao, T.S. and Hsieh, W. F., Appl. Phys., Lett. 76, 360 s2000d.
  39. Xie, X. N., Chung, H. J., Sow, C. H. and Wee, A. T. S., Appl. Phys., Lett. 84, 4914 s2004d.
  40. Park, J. W., Kawasegi, N., Morita, N. and Lee, D. W., 2004.09.06, "Tribonanolithography of Silicon in Aqueous Solution Based on Atomic Force Microscopy," Applied Physics Letters, Vol. 85, NO. 10, pp. 1766-1768.