Shape Memory Polymer Nanocomposites

형상 기억 고분자 나노 복합 소재

  • Hong, Jin-Ho (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju-Ho (Enviromental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
  • Received : 2010.07.13
  • Accepted : 2010.07.28
  • Published : 2010.09.30


The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.


  1. J. Su, Q. M. Zhang, and R. Y. Ting, "Space-Charge-Enhanced Electromechanical Response in Thin-Film Polyurethane Elastomers", Appl. Phys. Lett., 71, 386 (1997).
  2. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, "High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%", Science, 287, 836 (2000).
  3. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, "Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation", Sensors Actuat. A-Phys., 64, 77 (1998).
  4. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zental, P. Kruger, M. Losche, and F. Kremer., "Giant Lateral Electrostriction in Ferroelectric Liquid-Crystalline Elastomers", Nature, 410, 447 (2001).
  5. M. Warner, E. M. Terentjev, and Liquid Crystals Elastomers, Oxford University Press, New York, 2003.
  6. V. A. Beloshenko, V. N. Varyukhin, and Y. V. Vozntak, "The Shape Memory Effect in Polymers", Russ. Chem. Rev., 74, 265 (2005).
  7. C. Liu, H. Qin, and P. T. Mather, "Review of Progress in Shape-Memory Polymers", J. Mater. Chem., 17, 1543 (2007).
  8. A. LendLein and S. Kelch, "Shape-Memory Polymers", Angew. Chem. Int. Ed., 41, 2034 (2002).<2034::AID-ANIE2034>3.0.CO;2-M
  9. A. Lendlein, A. M. Schmidt, and R. Langer, "AB-Polymer Networks Based on Oligo($\varepsilon$-Caprolactone) Segment Showing Shape-Memory Properties", Proc. Natl. Acad. Sci. USA, 98, 842 (2001).
  10. J. E. Mark, "Rubber Elasticity", J. Chem. Educ., 58, 898 (1981).
  11. B. Dietsch and T. Tong, "A Review-Features and Benefits of Shape Memory Polymers (SMPs)", J. Adv. Mater.-Covina, 39, 3 (2007)
  12. D. Ranta and J. Karger-Kocsis, "Recent Advances in Shape Memory Polymers and Composites: a Review", J. Mater. Sci., 43, 254 (2008).
  13. Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, "Thermomechanical Recovery Couplings of Shape Memory Polymers in Flexure", Smart Mater. Struct., 12, 947 (2003).
  14. M. Y. Razzaq and L. Frormann, "Thermomechanical Studies of Aluminum Nitride Filled Shape Memory Polymer Composites", Polym. Compos., 28, 287 (2007).
  15. M. Y. Razzaq and L. Frormann, "Thermochemical Studies of Aluminium Nitride Filled Shape Memory Polymer Composites", Polym. Compos., 28, 287 (2007).
  16. C. Liu and P. T. Mather, "A Shape Memory Polymer with Improved Shape Recovery", Paper presented at the materials research society symposium proceedings. Mechanically active materials, MRS fall meeting, November 29-December 3 2004, Boston, MA, United States.
  17. C. S. Zhang and Q. Q. Nib, "Bending Behavior of Shape Memory Polymer Based Laminates", Compos. Struct., 78, 153 (2007).
  18. C. Liang, C. A. Rogers, and E. Malafeew, "Investigation of Shape Memory Polymers and Their Hybrid Composites", J. Intel. Mat. Syst. Struct., 8, 380 (1997).
  19. T. Ohki, Q. Q. Ni, N. Ohsako, Struct M. Iwamoto, "Mechanical and Shape Memory Behavior of Composites with Shape Memory Polymer", Compos. Part A: Appl. Sci. Manuf., 35, 1065 (2004).
  20. X. Lan, Y. Liu, H. Lv, X. Wang, J. Leng, and S. Du, "Fiber Reinforced Shape-Memory Polymer Composite and Its Application in A Deployable Hinge", Smart. Mater. Struct., 18, 024002 (2009).
  21. J. H. Yang, B. C. Chun, Y. C. Chung, J. W. Cho, and B. G. Cho, "Vibration Control Ability of Multilayered Composite Material Made of Epoxy Beam and Polyurethane Copolymer with Shape Memory Effect", J. Appl. Polym. Sci., 94, 302 (2004).
  22. J. W. Cho and S. H. Lee, "Influence of Silica on Shape Memory Effect and Mechanical Properties of Polyurethane-Silica Hybrids", Eur. Polym. J., 40, 1343 (2004).
  23. J. S. Park, Y. C. Chung, S. D. Lee, J. W. Cho, and B. C. Chun, "Shape Memory Effects of Polyurethane Block Copolymers Cross-Linked by Celite", Fibers Polym., 9, 661 (2008).
  24. K. Gall, M. L. Dunn, Y. Liu, D. Finch, M. Lake, and N. A. Munshi, "Shape Memory Polymer Nanocomposites", Acta Mater., 50, 5115 (2002).
  25. I. S. Gunes, F. Cao, and S. C. Jana, "Evaluation of Nanoparticulate Fillers for Development of Shape Memory Polyurethane Nanocomposites", Polymer, 49, 2223 (2008).
  26. V. A. Beloshenko, V. N. Varyukhin, and A. P. Borzenko, "The Shape Memory Effect in Structurally Heterogeneous Polymer Systems", Int. J. High Pressure Res., 22, 589 (2002).
  27. V. A. Beloshenko, Y. E. Beygelzimer, A. P. Borzenko, and V. N. Varyukhin, "Shape Memory Effect in the Epoxy Polymer- Thermoexpanded Graphite System", Compos. Part-A, 33, 1001 (2002).
  28. V. A. Beloshenko, Y. E. Beigelzimer, A. P. Borzenko, and V. N. Varyukhin, "Shape-Memory Effect in Polymer Composites with a Compatible Filler", Mech. Compos. Mater., 39, 255 (2003).
  29. V. A. Beloshenko, V. N. Varyukhin, and Y. V. Voznyak, "Electrical Properties of Carboncontaining Epoxy Compositions under Shape Memory Effect Realization", Compos. Part-A, 36, 65 (2005).
  30. V. A. Beloshenko and Y. V. Voznyak. "Shape Memory Effect in the Epoxy Polymer Composites with Aggregated Filler", Polym. Sci. Ser. A, 51, 416 (2009).
  31. I. S. Gunes and S. C. Jana, "Shape Memory Polymers and Their Nanocomposites: AReview of Science and Technology of New Multifunctional Materials", J. Nanosci. Nanotechnol., 8, 1616 (2008).
  32. B. Xu, Y. Q. Fu, M. Ahmad, J. K. Luo, W. M. Huang, A. Kraft, R. Reuben, Y. T. Pei, Z. G. Chend, and J. Th. M. De Hossond, "Thermo-Mechanical Properties of Polystyrene-Based Shape Memory Nanocomposites", J. Mater. Chem., 20, 3442 (2010).
  33. H. Koerner, G. Price, N. A. Pearce, M. Alexander, and R. A. Vaia, "Remotely Actuated Polymer Nanocomposites-Stress- Recovery of Carbon-Nanotube-Filled Thermoplastic Elastomers", Nat. Mater., 3, 115 (2004).
  34. I. H. Paik, N. S. Goo, K. J. Yoon, Y. C. Jung, and J. W. Cho, "Electric Resistance Property of a Conducting Shape Memory Polyurethane Actuator", Key Eng. Mater., 297, 1539 (2005).
  35. J. W. Cho, J. W. Kim, Y. C. Jung, and N. S. Goo, "Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes", Macromol. Rapid Commun., 26, 412 (2005).
  36. O. H. Meng, J. L. Hu, and S. Mondal, "Thermal Sensitive Shape Recovery and Mass Transfer Properties of Polyurethane/Modified MWNT Composite Membranes Synthesized via In Situ Solution Pre-Polymerization", J. Membrane Sci., 319, 102 (2008).
  37. N. G. Sahoo, Y. C. Jung, H. J. Yoo, and J. W. Cho, "Influence of Carbon Nanotubes and Polypyrrole on the Thermal, Mechanical and Electroactive Shape-Memory Properties of Polyurethane Nanocomposites", Compos. Sci. Technol., 67, 1920 (2007).
  38. F. Li, L. Qi, J. Yang, M. Xu, X. Luo, and D. Ma, "Polyurethane/ Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships", J. Appl. Polym. Sci., 75, 68 (2000).<68::AID-APP8>3.0.CO;2-I