Photocatalytic Degradation of Organic Dyes with Nanomaterials

나노소재를 이용한 유기염료 광촉매 분해 반응

  • Received : 2010.04.12
  • Accepted : 2010.07.07
  • Published : 2010.09.30


Zinc oxide(ZnO) nanoparticles were synthesized by reacting an aqueous-alcoholic zinc nitrate solution to sodium hydroxide under ultrasonic irradiation at room temperature. The fullerene($C_{60}$) and ZnO nanoparticles were heated individually in an electric furnace for two hours at $700^{\circ}C$. The morphology and optical properties of the $C_{60}$ and ZnO nanoparticles were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM) and ultraviolet/visible (UV-vis) spectroscopy. The photocatalytic activity of the heated and unheated the $C_{60}$ and ZnO nanoparticles for the decomposition of methylene blue(MB), methyl orange(MO) and rhodamine B(RhB) was examined using UV-vis spectroscopy.


  1. R.W. Matthews, "Photooxidative degradation of coloured organics in water using supported catalysts. $TiO_2$ on sand", Water. Res., 25, 1169 (1991).
  2. K. Tanaka, K. Padermpole, and T. Hisanaga, "Photocatalytic degradation of commercial azo dyes", Water. Res., 34, 327 (2000).
  3. P. Pawinrat, O. Mekasuwandumrong, and J. Panpranot, "Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes", Catal. Commun., 10, 1380 (2009).
  4. C. R. Lee, H. W. Lee, J. S. Song, W. W. Kim, and S. Park, "Synthesis and Ag recovery of nanosized ZnO powder by solution combustion process for photocatalytic applications", J. Mater. Synth. Process., 9, 281 (2001).
  5. Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraka, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization", J. Appl. Phys., 84, 3912 (1998).
  6. N. K. Park, Y. J. Lee, G. B. Han, S. O. Ryu, T. J. Lee, C. H. Chang, and G. Y. Han, "Synthesis of various zinc oxide nanostructures with zinc acetate and activated carbon by a matrix-assisted method", Coll. Surf. A, 313, 66 (2008).
  7. V. A. Coleman and C. Jagadish, "Basic properties and applications of ZnO", Thin Films Nanostruct. 1 (2006).
  8. S. Logothetidis, A. Laskarakis, S. Kassavetis, S. Lousinian, C. Gravalidis, and G. Kiriakidis, "Optical and structural properties of ZnO for transparent electronics", Thin Solid Films, 516, 1345 (2008).
  9. C. Hariharan, "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited", Appl. Catal. A : Gen., 304, 55 (2006).
  10. J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, and P. Wu, "Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange", Surf. Coat. Technol., 204, 205 (2009).
  11. M. Noorjahan. V. D. Kumari, M. Subrahmanyam, and P. Boule, "A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film", Appl. Catal. B : Environ., 47, 209 (2004)
  12. C. Wang, B. Q. Xu, X. Wang, and J. Zhao, "Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture", J. Solid State Chem., 178, 3500 (2005).
  13. Haddon, R. C, "Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic-molecules", Science, 261, 1545 (1993).
  14. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270, 1789 (1995).
  15. H. Hotta, S. Kang, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda, and H. Imahori, "Effects of fullerene substituents on structure and photoelectrochemical properties of fullerene nanoclusters electrophoretically deposited on nanostructured $SnO_2$ electrodes", J. Phys. Chem. B, 109, 5700 (2005).
  16. D. Hirayama, T. Yamashiro, K. Takimiya, Y. Aso, T. Otsubo, H. Norieda, H. Imahori, and Y. Sakata, "Preparation and photoelectrochemical properties of gold electrodes modified with [60]fullerene-linked oligothiophenes", Chem. Lett., 29, 570 (2000).
  17. D. F. Liu, S. H. Yang, and S.-T. Lee, "Preparation of novel cuprous oxide-fullerene[60] core-shell nanowires and nanoparticles via a copper(I)-assisted fullerene-polymerization reaction", J. Phys. Chem. C, 112, 7110 (2008).
  18. R. S. Yadav, P. Mishra, and A. C. Pandey, "Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method", Ultrasonics, 15, 863 (2008).
  19. B. Li, X. Tao, H. Kasai, H. Oikawa, and H. Nakanishi, "Size control for fullerene C60 nanocrystals during the high temperature and high pressure fluid crystallization process", Mater. Letter, 61, 1738 (2007).
  20. J. Zhang, Y. Yang, B. Xu, F. Jiang, and J. Li, "Shape-controlled synthesis of ZnO nano- and micro-structures", J. Cryst. Growth., 280, 509 (2005).
  21. A. Smontara, A. M. Tonejc, S. Gadecak, A. Tonejc, A. Bilušić, and J. C. Lasjaunias, "Structural (XRD and HRTEM) investigations of fullerite C60 and C70 samples", Mater. Sci. Eng. C, 19, 21 (2002).
  22. V. Houskova, V. Stengl, S. Bakardjieva, N. Murafa, A. Kalendova, and F. Oplustil "Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare Agents, and photocatalytic activity", J. Phys. Chem. A, 111, 4215 (2007).
  23. F. D. Mai, C. C. Chen, J. L. Chen, and S. C. Liu, "Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method", J. Chromatogr. A, 1189, 355 (2008).
  24. C.C. Chen, "Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions", J. Mol. Catal. A: Chem., 264, 82 (2007).