나노소재를 이용한 유기염료 광촉매 분해 반응

Photocatalytic Degradation of Organic Dyes with Nanomaterials

  • 투고 : 2010.04.12
  • 심사 : 2010.07.07
  • 발행 : 2010.09.30

초록

실온의 초음파 조건에서 질산 아연과 수산화 나트륨을 각각 물과 알코올 용액에서 반응시켜 산화 아연(ZnO) 나노입자를 합성하였다. 풀러렌($C_{60}$)과 ZnO 나노입자들은 전기로를 이용하여 각각 $700^{\circ}C$ 에서 2 시간 동안 가열하였다. 풀러렌($C_{60}$)과 ZnO 나노입자들의 형태와 광학성질은 XRD, SEM, TEM 과 UV-vis spectroscopy를 이용하여 분석하였다. 가열한 $C_{60}$과 ZnO 나노입자, 비가열한 $C_{60}$과 ZnO 나노입자를 각각 methylene blue(MB), methyl orange(MO), rhodamine B(RhB)용액에서 UV-vis spectroscopy를 사용하여 광촉매 분해반응을 연구하였다.

참고문헌

  1. R.W. Matthews, "Photooxidative degradation of coloured organics in water using supported catalysts. $TiO_2$ on sand", Water. Res., 25, 1169 (1991). https://doi.org/10.1016/0043-1354(91)90054-T
  2. K. Tanaka, K. Padermpole, and T. Hisanaga, "Photocatalytic degradation of commercial azo dyes", Water. Res., 34, 327 (2000). https://doi.org/10.1016/S0043-1354(99)00093-7
  3. P. Pawinrat, O. Mekasuwandumrong, and J. Panpranot, "Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes", Catal. Commun., 10, 1380 (2009). https://doi.org/10.1016/j.catcom.2009.03.002
  4. C. R. Lee, H. W. Lee, J. S. Song, W. W. Kim, and S. Park, "Synthesis and Ag recovery of nanosized ZnO powder by solution combustion process for photocatalytic applications", J. Mater. Synth. Process., 9, 281 (2001). https://doi.org/10.1023/A:1015255619242
  5. Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraka, Z. Zhu, and T. Yao, "Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization", J. Appl. Phys., 84, 3912 (1998). https://doi.org/10.1063/1.368595
  6. N. K. Park, Y. J. Lee, G. B. Han, S. O. Ryu, T. J. Lee, C. H. Chang, and G. Y. Han, "Synthesis of various zinc oxide nanostructures with zinc acetate and activated carbon by a matrix-assisted method", Coll. Surf. A, 313, 66 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.074
  7. V. A. Coleman and C. Jagadish, "Basic properties and applications of ZnO", Thin Films Nanostruct. 1 (2006).
  8. S. Logothetidis, A. Laskarakis, S. Kassavetis, S. Lousinian, C. Gravalidis, and G. Kiriakidis, "Optical and structural properties of ZnO for transparent electronics", Thin Solid Films, 516, 1345 (2008).
  9. C. Hariharan, "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited", Appl. Catal. A : Gen., 304, 55 (2006). https://doi.org/10.1016/j.apcata.2006.02.020
  10. J. Tian, L. Chen, Y. Yin, X. Wang, J. Dai, Z. Zhu, X. Liu, and P. Wu, "Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange", Surf. Coat. Technol., 204, 205 (2009). https://doi.org/10.1016/j.surfcoat.2009.07.008
  11. M. Noorjahan. V. D. Kumari, M. Subrahmanyam, and P. Boule, "A novel and efficient photocatalyst: TiO2-HZSM-5 combinate thin film", Appl. Catal. B : Environ., 47, 209 (2004) https://doi.org/10.1016/j.apcatb.2003.08.004
  12. C. Wang, B. Q. Xu, X. Wang, and J. Zhao, "Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture", J. Solid State Chem., 178, 3500 (2005). https://doi.org/10.1016/j.jssc.2005.09.005
  13. Haddon, R. C, "Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic-molecules", Science, 261, 1545 (1993). https://doi.org/10.1126/science.261.5128.1545
  14. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions", Science, 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
  15. H. Hotta, S. Kang, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda, and H. Imahori, "Effects of fullerene substituents on structure and photoelectrochemical properties of fullerene nanoclusters electrophoretically deposited on nanostructured $SnO_2$ electrodes", J. Phys. Chem. B, 109, 5700 (2005). https://doi.org/10.1021/jp044725r
  16. D. Hirayama, T. Yamashiro, K. Takimiya, Y. Aso, T. Otsubo, H. Norieda, H. Imahori, and Y. Sakata, "Preparation and photoelectrochemical properties of gold electrodes modified with [60]fullerene-linked oligothiophenes", Chem. Lett., 29, 570 (2000). https://doi.org/10.1246/cl.2000.570
  17. D. F. Liu, S. H. Yang, and S.-T. Lee, "Preparation of novel cuprous oxide-fullerene[60] core-shell nanowires and nanoparticles via a copper(I)-assisted fullerene-polymerization reaction", J. Phys. Chem. C, 112, 7110 (2008).
  18. R. S. Yadav, P. Mishra, and A. C. Pandey, "Growth mechanism and optical property of ZnO nanoparticles synthesized by sonochemical method", Ultrasonics, 15, 863 (2008).
  19. B. Li, X. Tao, H. Kasai, H. Oikawa, and H. Nakanishi, "Size control for fullerene C60 nanocrystals during the high temperature and high pressure fluid crystallization process", Mater. Letter, 61, 1738 (2007). https://doi.org/10.1016/j.matlet.2006.07.121
  20. J. Zhang, Y. Yang, B. Xu, F. Jiang, and J. Li, "Shape-controlled synthesis of ZnO nano- and micro-structures", J. Cryst. Growth., 280, 509 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.003
  21. A. Smontara, A. M. Tonejc, S. Gadecak, A. Tonejc, A. Bilušić, and J. C. Lasjaunias, "Structural (XRD and HRTEM) investigations of fullerite C60 and C70 samples", Mater. Sci. Eng. C, 19, 21 (2002). https://doi.org/10.1016/S0928-4931(01)00427-1
  22. V. Houskova, V. Stengl, S. Bakardjieva, N. Murafa, A. Kalendova, and F. Oplustil "Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare Agents, and photocatalytic activity", J. Phys. Chem. A, 111, 4215 (2007). https://doi.org/10.1021/jp070878d
  23. F. D. Mai, C. C. Chen, J. L. Chen, and S. C. Liu, "Photodegradation of methyl green using visible irradiation in ZnO suspensions: Determination of a high-performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry method", J. Chromatogr. A, 1189, 355 (2008). https://doi.org/10.1016/j.chroma.2008.01.027
  24. C.C. Chen, "Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions", J. Mol. Catal. A: Chem., 264, 82 (2007). https://doi.org/10.1016/j.molcata.2006.09.013