Silica/polymer Nanocomposite Containing High Silica Nanoparticle Content : Change in Proton Conduction and Water Swelling with Surface Property of Silica Nanoparticles

고농도의 Silica Nanoparticle을 함유한 Silica/polymer 나노복합체 : 실리카 표면 특성에 따른 수소이온 전도성 및 수팽윤도 변화

  • Kim, Ju-Young (Department of Advanced Materials Engineering, College of Engineering, Kangwon National University) ;
  • Kim, Seung-Jin (Reliability Assessment Center, Korea Institute of Construction Materials) ;
  • Na, Jae-Sik (Department of Chemical Engineering, Kwangwoon University)
  • 김주영 (강원대학교 공학대학 신소재공학과) ;
  • 김승진 (한국건자재시험연구원 신뢰성평가센터) ;
  • 나재식 (광운대학교 화학공학과)
  • Received : 2010.04.22
  • Accepted : 2010.07.28
  • Published : 2010.10.10


A new one-shot process was employed to fabricate proton exchange membranes (PEMs) over conventional solvent-casting process. Here, PEMs containing nano-dispersed silica nanoparticles were fabricated using one-shot process similar to the bulk-molding compounds (BMC). Different components such as reactive dispersant, urethane acrylate nonionmer (UAN), styrene, styrene sulfuric acid and silica nano particles were dissolved in a single solvent dimethyl sulfoxide (DMSO) followed by copolymerization within a mold in the presence of radical initiator. We have successfully studied the water-swelling and proton conductivity of obtained nanocomposite membranes which are strongly depended on the surface property of dispersed silica nano particles. In case of dispersion of hydrophilic silica nanoparticles, the nanocomposite membranes exhibited an increase in water-swelling and a decrease in methanol permeability with almost unchanged proton conductivity compared to neat polymeric membrane. The reverse observations were achieved for hydrophobic silica nanoparticles. Hence, hydrophilic and hydrophobic silica nanoparticles were effectively dispersed in hydrophilic and hydrophobic medium respectively. Hydrophobic silica nanoparticles dispersed in hydrophobic domains of PEMs largely suppressed swelling of hydrophilic domains by absorbing water without interrupting proton conduction occurred in hydrophilic membrane. Consequently, proton conductivity and water-swelling could be freely controlled by simply dispersing silica nanopartilces within the membrane.


  1. M. Alexandre and P. Dubois, Materials Science and Engineering, 28, 1 (2000).
  2. V. Castelvetro and C. D. Vita, Advances in Colloid and Interface Science, 108, 167 (2004).
  3. I. Honma, S. Nomura, and H. Nakajima, J. Membrane Sci., 185, 83 (2001).
  4. S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, J. Membr. Sci., 203, 215 (2002).
  5. Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim, and H. I. Lee, Electochim. Acta, 49, 4787 (2004).
  6. N. Miyake, J. S. Wainright, and R. F. Savinell, J. Electrochem. Soc., 148, A898 (2001).
  7. R. Jiang, H. R. Kunz, and J. M. Fenton, J. Membr. Sci., 272, 116 (2006).
  8. J. Y. Kim, S. Mulmi, S. C. H. Lee, H. B. Park, Y. S. Chung, and Y. M. Lee, J. Membr. Sci., 283, 172 (2006).
  9. J. Y. Kim, S. Mulmi, C. H. Lee, Y. M. Lee, and K. J. Ihn, J. Appl. Polym. Sci., 107, 2150 (2008).
  10. J. Y. Kim, D. H. Shin, K. J. Ihn, and C. W. Nam, Macromol Chem Phys, 203, 2454 (2002).
  11. J. Y. Kim, D. H. Shin, and K. J. Ihn. J. Appl. Polym. Sci., 97, 2357 (2005).
  12. C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and B. D. Freeman, Macromolecules, 39, 755 (2006).
  13. K. D. Kreuer, Handbook of fuel cells-fundamental technology and application: John Wiley & Sons: New York, 2003.
  14. J. O. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003).