Suppression of Charge Recombination Rate in Nanocrystalline SnO2 by Thin Coatings of Divalent Oxides in Dye-Sensitized Solar Cells

  • Lee, Chae-Hyeon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Lee, Gi-Won (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Kang, Wee-Kyung (Department of Chemistry, Soongsil University) ;
  • Lee, Doh-Kwon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Ko, Min-Jae (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Kyoung-Kon (Solar Cell Center, Korea Institute of Science and Technology) ;
  • Park, Nam-Gyu (School of Chemical Engineering, Sungkyunkwan University)
  • Received : 2010.04.26
  • Accepted : 2010.05.26
  • Published : 2010.11.20


The core-shell $SnO_2$@AO (A=Ni, Cu, Zn and Mg) films were prepared and the effects of coatings on photovoltaic properties were investigated. Studies on X-ray photoelectron spectroscopy, energy dispersive X-ray analysis and transmission electron microscopy showed the formation of divalent oxides on the surface of $SnO_2$ nanoparticles. It was commonly observed that all the dye-sensitized core-shell films exhibited higher photovoltage than the bare $SnO_2$ film. Transient photovoltage measurements confirmed that the improved photovoltages were related to the decreased time constants for electron recombination.



Supported by : National Research Foundation of Korea (NRF)


  1. Wang, Q.; Ito, S.; Gratzel, M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.
  2. Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Pt. 2 2006, 45, L638.
  3. Park, N.-G.; Kim, K. Phys. Stat. Sol. (a) 2008, 205, 1895.
  4. Kay, A.; Grätzel, M. Chem. Mater. 2002, 14, 2930.
  5. Park, N.-G.; Kang, M. G.; Kim, K. M.; Ryu, K. S.; Chang, S. H.; Kim, D.-K.; van de Lagemaat, J.; Benkstein, K. D.; Frank, A. J. Langmuir 2004, 20, 4246.
  6. Chappel, S.; Chen, S.-G.; Zaban, A. Langmuir 2002, 18, 3336.
  7. Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem. B 2003, 107, 1977.
  8. Diamant, Y.; Chappel, S.; Chen, S.-G.; Melamed, O.; Zaban, A. Coord. Chem. Rev. 2004, 248, 1271.
  9. Bandaranayake, K. M .P.; Indika Senevirathna, M. K.; Prasad Weligamuwa, P. M. G. M.; Tennakone, K. Coord. Chem. Rev. 2004, 248, 1277.
  10. Ito, S.; Nazeeruddin, K.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Jirousek, M.; Kay, A.; Zakeeruddin, S. M.; Grätzel, M. Prog. Photovolt: Res. Appl. 2006, 14, 589.
  11. Park, J.; Koo, H.-J.; Yoo, B.; Yoo, K.; Kim, K.; Choi, W.; Park, N.-G. Sol. Energy Mater. Sol. Cells 2007, 91, 1749.
  12. Kopidakis, N.; Benkstein, K. D.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2003, 107, 11307.
  13. Benkstein, K. D.; Kopidakis, N.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2003, 107, 7759.
  14. McIntyre, N. S.; Cook, M. G. Anal. Chem. 1975, 47, 2208.
  15. Roberts, M. W.; Smart, R. St. C. Surf. Sci. 1980, 100, 590.
  16. Khyzhun, O.; Sygellou, L.; Ladas, S. J. Phys. Chem. B 2005, 109, 2302.
  17. Vasilkov, A. Y.; Nikolaev, S. A.; Smirnov, V. V.; Naumkin, A. V.; Volkov, I. O.; Podshibikhin, V. L. Mendeleev Commun. 2007, 17, 268.
  18. Liu, X. F.; Yu, R. H. J. Appl. Phys. 2007, 102, 083917.
  19. Chusuei, C. C.; Brookshier, M. A.; Goodman, D. W. Langmuir 1999, 15, 2806.
  20. Ghijsen, J.; Tjeng, L. H.; Elp, J. V.; Eskes, H.; Westerink, J.; Sawatzky, G. A.; Czyzyk, M. T. Phys. Rev. B 1988, 38, 11322.
  21. Bechara, R.; Aboukais, A.; Bonnelle, J.-P. J. Chem. Soc. Faraday Trans. 1993, 89, 1257.
  22. Yin, M.; Wu, C.-K.; Lou, Y.; Burda, C.; Koberstein, J. T.; Zhu, Y.; O'Brien, S. J. J. Am. Chem. Soc. 2005, 127, 9506.
  23. Puchert, M. K.; Timbrell, P. Y.; Lamb, R. N. J. Vac. Sci. Technol. A 1996, 14, 2220.
  24. Bar, M.; Reichardt, J.; Sieber, I.; Grimm, A.; Kotschau, I.; Lauermann, I.; Sokoll, S.; Lux-Steiner, M. C.; Fischer, C. H.; Niesen, T. P. J. Appl. Phys. 2006, 100, 23710.
  25. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: USA, Waltham, MA, 1992.
  26. Kang, S. H.; Kim, J.-Y.; Kim, Y.; Kim, H. S.; Sung, Y.-E. J. Phys. Chem. C 2007, 111, 9614.
  27. Sun, L.; Wei, G.; Song, Y.; Liu, Z.; Wang, L.; Li, Z. Mater. Lett. 2006, 60, 1291.
  28. Corneille, J. S.; He, J.-W.; Goodman, D. W. Surf. Sci. 1994, 306, 269.
  29. Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Phys. Chem. Chem. Phys. 2000, 2, 1319.
  30. Kosmulski, M. Chemical Properties of Material Surfaces; Marcel Dekker: 2001.
  31. Lewis, J. A. J. Am. Ceram. Soc. 2000, 83, 2341.
  32. Brunelle, J. P. Pure Appl. Chem. 1978, 50, 1211.

Cited by

  1. Electrode vol.116, pp.43, 2012,
  2. Structural and optical properties of Eu2O3 coated TiO2 nanoparticles and their application for dye sensitized solar cell vol.24, pp.4, 2013,
  3. -based MK-2 dye-sensitized solar cells vol.17, pp.23, 2015,
  4. nanochannel arrays for photovoltaic applications vol.7, pp.18, 2015,
  5. –Ag core–shell or hybrid nanoparticles vol.40, pp.12, 2016,
  6. Nanocrystals as Efficient DSSC Photoanode Material and Remarkable Photocurrent Enhancement by Interface Modification vol.159, pp.9, 2012,