Personalized Dietary Nutrition Contents Recommendation using Hybrid Filtering for Managing Health

건강관리를 위한 혼합 필터링을 이용한 개인화 식이영양 콘텐츠 추천

  • 정경용 (상지대학교 컴퓨터정보공학부) ;
  • 이영호 (가천의과학대학교 의료공학부)
  • Received : 2011.05.04
  • Accepted : 2011.06.16
  • Published : 2011.11.28


With the development of next IT convergence technology and the construction of infrastructure for personalized healthcare services, the importance of services based on user's preference is being spotlighted. Healthcare service have been progressed as treatment and management for specific diseases and dietary nutrition managements to customers according to the increase in chronic patients. In this paper, we proposed the personalized dietary nutrition contents recommendation using the hybrid filtering for managing health. The proposed method uses the hybrid filtering through combining the collaborative filtering and the image filtering in order to reinforce the special trend that recommendation provides similar contents. We developed the Web application for this purpose, and experimented with it to verify the logical validity and effectiveness. Accordingly, the satisfaction and the quality of services will be improved the healthcare by recommending the dietary nutrition contents. This evaluation found that the difference of satisfaction by service was statistically meaningful and showed high satisfaction.


Preference;Nutrition Contents;Recommendation;Simulation;Collaborative Filtering;Chronic Patient


Supported by : 한국연구재단


  1. M. Jalali, N. Mustapha, Md. N. Sulaiman, A. Mamat, "WebPUM: A Web-based Recommendation System to Predict User Future Movements," J. of Expert Systems with Applications, Vol.37, Issue9, pp.6201-6212, 2010.
  2. S. U. Jang, J. Y. Cho, K. S. Jeong, and G. S. Cho, "Exploring Possibilities of ECG Electrodes for Bio-monitoring Smartwear with Cu Sputtered Fabrics," J. of Human-Computer Interaction, Vol.4551, pp.1130-1137, 2007.
  3. H. N. Kim, A. T. Jia, I. A. Haa, and G. S. Joa, "Collaborative Filtering based on Collaborative Tagging for Enhancing the Quality of Recommendation," J. of Electronic Commerce Research and Applications, Vol.9, Issue1, pp.73-83, 2010.
  4. P. Melville, R. J. Mooney, and R. Nagarajan, "Content-Boosted Collaborative Filtering for Improved Recommendations," Proc. of National Conference on Artificial Intelligence, pp.187-192, 2002.
  5. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, "Evaluating Collaborative Filtering Recommender Systems," J. of ACM Trans. on Information Systems, Vol.22, No.1, pp.5-53, 2004.
  6. 정경용, 조선문, "내용 기반 필터링을 위한 프로파일 학습에 의한 선호도 발견", 한국콘텐츠학회논문지, 제8권, 제2호, pp.1-8, 2008.
  7. 정경용, "이미지 기반 필터링을 이용한 개인화 아이템 추천", 한국콘텐츠학회논문지, 제8권, 제3호, pp.1-7, 2008.
  8. 정경용, "혼합 필터링과 연관 이웃 마이닝을 이용한 개인화 아이템 추천 기법", 인하대학교 컴퓨터정보공학과 박사학위논문, 2005.
  9. K. Y. Chung, "Sensibility Ergonomics Fashion Recommendation System using Weather WebBot," Proc. of the International Conference on Information Science and Applications 2011, pp.712-717, IEEE Computer Society, 2011.
  10. 박동균, 김종훈, 김재권, 정은영, 이용호, "멀티플랫폼 환경의 만성 질환자 건강관리를 위한 유헬스 서비스 모델", 한국콘텐츠학회논문지, 제11권, 제8호, pp.23-32, 2011.

Cited by

  1. Discovery of automotive design paradigm using relevance feedback vol.18, pp.6, 2014,