DOI QR코드

DOI QR Code

ON THE RATES OF THE ALMOST SURE CONVERGENCE FOR SELF-NORMALIZED LAW OF THE ITERATED LOGARITHM

  • Pang, Tian-Xiao (Department of Mathematics Yuquan Campus Zhejiang University)
  • 투고 : 2010.03.22
  • 발행 : 2011.11.30

초록

Let {$X_i$, $i{\geq}1$} be a sequence of i.i.d. nondegenerate random variables which is in the domain of attraction of the normal law with mean zero and possibly infinite variance. Denote $S_n={\sum}_{i=1}^n\;X_i$, $M_n=max_{1{\leq}i{\leq}n}\;{\mid}S_i{\mid}$ and $V_n^2={\sum}_{i=1}^n\;X_i^2$. Then for d > -1, we showed that under some regularity conditions, $$\lim_{{\varepsilon}{\searrow}0}{\varepsilon}^2^{d+1}\sum_{n=1}^{\infty}\frac{(loglogn)^d}{nlogn}I\{M_n/V_n{\geq}\sqrt{2loglogn}({\varepsilon}+{\alpha}_n)\}=\frac{2}{\sqrt{\pi}(1+d)}{\Gamma}(d+3/2)\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^{2d+2}}\;a.s.$$ holds in this paper, where If g denotes the indicator function.

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China

참고문헌

  1. L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 (1965), 108-123. https://doi.org/10.1090/S0002-9947-1965-0198524-1
  2. R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal. 8 (1978), no. 2, 328-333. https://doi.org/10.1016/0047-259X(78)90084-2
  3. M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic, New York, 1981.
  4. M. Csorgo, B. Szyszkowicz, and Q. Y. Wang, Donsker's theorem for self-normalized partial sums processes, Ann. Probab. 31 (2003), no. 3, 1228-1240. https://doi.org/10.1214/aop/1055425777
  5. V. H. de la Pena, T. L. Lai, and Q. M. Sha, Self-Normalized Processes: Limit Theory and Statistical Applications, Springer, New York, 2009.
  6. P. Erdos, On a theorem of Hsu and Robbins, Ann. Math. Statist. 20 (1949), 286-291. https://doi.org/10.1214/aoms/1177730037
  7. A. Gut and A. Spataru, Precise asymptotics in the law of the iterated logarithm, Ann. Probab. 28 (2000), no. 4, 1870-1883. https://doi.org/10.1214/aop/1019160511
  8. C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab. 12 (1975), 173-175. https://doi.org/10.2307/3212424
  9. P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. U.S.A. 33 (1947), 25-31. https://doi.org/10.1073/pnas.33.2.25
  10. T. L. Lai and Q. M. Shao, Self-normalized limit theorems in probability and statistics. In: Asymptotic Theory in Probability and Statistics with Applications (Editors: T. L. Lai, L. F. Qian, and Q. M. Shao), International Press of Boston. pp. 3-43, 2007.
  11. T. X. Pang, L. X. Zhang, and J. F. Wang, Precise asymptotics in the self-normalized law of the iterated logarithm, J. Math. Anal. Appl. 340 (2008), no. 2, 1249-1262. https://doi.org/10.1016/j.jmaa.2007.09.054
  12. Q. M. Shao, Self-normalized large deviations, Ann. Probab. 25 (1997), no. 1, 285-328. https://doi.org/10.1214/aop/1024404289
  13. A. Spataru, Precise asymptotics in Spitzer's law of large numbers, J. Theoret. Probab. 12 (1999), no. 3, 811-819. https://doi.org/10.1023/A:1021636117551
  14. L. X. Zhang, Precise rates in the law of the iterated logarithm, Available at http://arxiv1.library.cornell.edu/abs/math/0610519v1.