FINITE NON-NILPOTENT GENERALIZATIONS OF HAMILTONIAN GROUPS

• Shen, Zhencai (LMAM and School of Mathematical Sciences Peking University) ;
• Shi, Wujie (School of Mathematics and Statics Chongqing University of Arts and Sciences) ;
• Zhang, Jinshan (School of Science Sichuan University of Science and Engineering)
• Published : 2011.11.30

Abstract

In J. Korean Math. Soc, Zhang, Xu and other authors investigated the following problem: what is the structure of finite groups which have many normal subgroups? In this paper, we shall study this question in a more general way. For a finite group G, we define the subgroup $\mathcal{A}(G)$ to be intersection of the normalizers of all non-cyclic subgroups of G. Set $\mathcal{A}_0=1$. Define $\mathcal{A}_{i+1}(G)/\mathcal{A}_i(G)=\mathcal{A}(G/\mathcal{A}_i(G))$ for $i{\geq}1$. By $\mathcal{A}_{\infty}(G)$ denote the terminal term of the ascending series. It is proved that if $G=\mathcal{A}_{\infty}(G)$, then the derived subgroup G' is nilpotent. Furthermore, if all elements of prime order or order 4 of G are in $\mathcal{A}(G)$, then G' is also nilpotent.

Acknowledgement

Supported by : Natural Science Foundation of China, NSF

References

1. R. Baer, Der Kern eine charakteristische Untergruppe, Compositio Math. 1 (1934), 254-283.
2. R. Baer, Norm and hypernorm, Publ. Math. Debrecen 4 (1956), 347-356.
3. R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115-187.
4. R. Baer, Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Compositio Math. 2 (1935), 247-249.
5. J. C. Beidleman, H. Heineken, and M. Newell, Centre and norm, Bull. Austral. Math. Soc. 69 (2004), no. 3, 457-464. https://doi.org/10.1017/S0004972700036248
6. T. R. Berger, L. G. Kovacs, and M. F. Newman, Groups of prime power order with cyclic Frattini subgroup, Nederl. Akad.Wetensch. Indag. Math. 42 (1980), no. 1, 13-18.
7. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Ischia group theory 2004, 13-93, Contemp. Math., 402, Amer. Math. Soc., Providence, RI, 2006.
8. Z. Bozikov and Z. Janko, A complete classification of finite p-groups all of whose noncyclic subgroups are normal, Glas. Mat. Ser. III 44(64) (2009), no. 1, 177-185. https://doi.org/10.3336/gm.44.1.10
9. R. Brandl, Groups with few non-normal subgroups, Comm. Algebra 23 (1995), no. 6, 2091-2098. https://doi.org/10.1080/00927879508825330
10. R. A. Bryce and J. Cossey, The Wielandt subgroup of a finite soluble group, J. London Math. Soc. (2) 40 (1989), no. 2, 244-256. https://doi.org/10.1112/jlms/s2-40.2.244
11. J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z. 116 (1970), no. 1, 15-17. https://doi.org/10.1007/BF01110184
12. A. R. Camina, The Wielandt length of finite groups, J. Algebra 15 (1970), 142-148. https://doi.org/10.1016/0021-8693(70)90091-8
13. Z. Chen, Inner $\Sigma$-groups. II, Acta Math. Sinica 24 (1981), no. 3, 331-336.
14. D. Gorenstein, Finite Groups, Chelsea, New York, 1980.
15. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
16. H. Kurzweil and B. Stellmacher, The Theory of Finite Groups: An Introduction, Springer-Verlag New York, Inc., 2004.
17. S. Li and Z. Shen, On the intersection of normalizers of direved subgroups of all subgroups of a finite group, J. Algebra 323 (2010), 1349-1357. https://doi.org/10.1016/j.jalgebra.2009.12.015
18. T. D. Lukashova, On the noncyclic norm of infinite locally finite groups, Ukrain. Mat. Zh. 54 (2002), no. 3, 342-348; translation in Ukrainian Math. J. 54 (2002), no. 3, 421-428.
19. G. A. Miller and H. C. Moreno, Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc. 4 (1903), no. 4, 398-404. https://doi.org/10.1090/S0002-9947-1903-1500650-9
20. H. Mousavi, On Finite groups with few non-normal subgroups, Comm. Algebra 27 (1999), no. 7, 3143-3151. https://doi.org/10.1080/00927879908826617
21. M. Newman and J. Wiegold, Groups with many nilpotent subgroups, Arch. Math. 15 (1964), 241-250. https://doi.org/10.1007/BF01589192
22. D. S. Passman, Nonnormal subgroups of p-groups, J. Algebra 15 (1970), 352-370. https://doi.org/10.1016/0021-8693(70)90064-5
23. D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
24. E. Schenkman, On the norm of a group, Illinois J. Math. 4 (1960), 150-152.
25. Q. Song and H. Qu, Finite 2-groups whose subgroups are cyclic or normal, Math. Pract. Theory 38 (2008), no. 10, 191-197.
26. H. Wielandt, Uber der Normalisator der Subnormalen Untergruppen, Math. Z. 69 (1958), 463-465. https://doi.org/10.1007/BF01187422
27. Q. Zhang, X. Guo, H. Qu, and M. Xu, Finite Groups which have many normal subgroups, J. Korean Math. Soc. 46 (2009), no. 6, 1165-1178. https://doi.org/10.4134/JKMS.2009.46.6.1165

Cited by

1. On the generalized norm of a finite group vol.15, pp.01, 2016, https://doi.org/10.1142/S0219498816500080
2. Groups with Certain Normality Conditions vol.44, pp.8, 2016, https://doi.org/10.1080/00927872.2015.1044104
3. On a Generalization of Hamiltonian Groups and a Dualization of PN-Groups vol.41, pp.5, 2013, https://doi.org/10.1080/00927872.2011.644609
4. Generalised norms in finite soluble groups vol.402, 2014, https://doi.org/10.1016/j.jalgebra.2013.12.012