DOI QR코드

DOI QR Code

A DETERMINANT FORMULA FOR CONGRUENT ZETA FUNCTIONS OF REAL ABELIAN FUNCTION FIELDS

  • Received : 2010.07.07
  • Published : 2011.11.30

Abstract

In this paper we give a determinant formula for congruent zeta functions of real Abelian function fields. We also give some example of congruent zeta functions when the conductor of real Abelian function field is monic irreducible.

Keywords

congruent zeta function;Abelian function field

References

  1. J. Ahn, S. Choi, and H. Jung, Class number formulae in the form of a product of determinants in function fields, J. Aust. Math. Soc. 78 (2005), no. 2, 227-238. https://doi.org/10.1017/S1446788700008053
  2. S. Bae, H. Jung, and J. Ahn, Class numbers of some abelian extensions of rational function fields, Math. Comp. 73 (2004), no. 245, 377-386.
  3. S. Bae and P.-L. Kang, Class numbers of cyclotomic function fields, Acta Arith. 102 (2002), no. 3, 251-259. https://doi.org/10.4064/aa102-3-4
  4. M. Rosen, A note on the relative class number in function fields, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1299-1303. https://doi.org/10.1090/S0002-9939-97-03748-9
  5. D. Shiomi, A determinant formula for congruence zeta functions of maximal real cyclotomic function fields, Acta Arith. 138 (2009), no. 3, 259-268. https://doi.org/10.4064/aa138-3-3

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)