DOI QR코드

DOI QR Code

VALUE SHARING RESULTS OF A MEROMORPHIC FUNCTION f(z) AND f(qz)

  • Qi, Xiaoguang (School of Mathematics University of Jinan) ;
  • Liu, Kai (Department of Mathematics Nanchang University) ;
  • Yang, Lianzhong (School of Mathematics Shandong University)
  • 투고 : 2010.07.13
  • 발행 : 2011.11.30

초록

In this paper, we investigate sharing value problems related to a meromorphic function f(z) and f(qz), where q is a non-zero constant. It is shown, for instance, that if f(z) is zero-order and shares two valves CM and one value IM with f(qz), then f(z) = f(qz).

과제정보

연구 과제 주관 기관 : NNSF of China, NSF of Shandong Province

참고문헌

  1. D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457-474. https://doi.org/10.1017/S0308210506000102
  2. A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Transl. Math. Monogr., vol. 236, American Mathematical Society, Providence, RI, 2008, translated from the 1970 Russian original by Mikhail Ostrovskii, with an appendix by Alexandre Eremenko and James K. Langley.
  3. G. G. Gundersen, Meromorphic functions that share three or four values, J. London Math. Soc. (2) 20 (1979), no. 3, 457-466. https://doi.org/10.1112/jlms/s2-20.3.457
  4. G. G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983), no. 2, 545-567. https://doi.org/10.1090/S0002-9947-1983-0694375-0
  5. W. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  6. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. L. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  7. I. Laine and C. C. Yang, Clunie theorem for difference and q-difference polynomials, J. London. Math. Soc. (2) 76 (2007), no. 3, 556-566. https://doi.org/10.1112/jlms/jdm073
  8. P. Li and C. C. Yang, When an entire function and its linear differential polynomial share two values, Illinois J. Math. 44 (2000), no. 2, 349-362.
  9. R. Nevanlinna, Le theoreme de Picard-Borel et la theorie des fonctions meromorphes, Gauthiers-Villars, Paris, 1929.
  10. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.
  11. J. L. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038

피인용 문헌

  1. VALUE DISTRIBUTION AND UNIQUENESS ON q-DIFFERENCES OF MEROMORPHIC FUNCTIONS vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1157
  2. SETS AND VALUE SHARING OF q-DIFFERENCES OF MEROMORPHIC FUNCTIONS vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.731
  3. Difference analogues of the second main theorem of zero-order meromorphic mappings for slowly moving targets 2017, https://doi.org/10.1142/S1793557118500535
  4. -Difference Equations Containing Painlevé Equation vol.2018, pp.2314-8888, 2018, https://doi.org/10.1155/2018/8318570