DOI QR코드

DOI QR Code

LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH HARMONIC POTENTIAL IN Hs

  • Zhang, Shan (The College of Mathematical Sciences Yangzhou University) ;
  • Liu, Zuhan (School of Mathematical Science Xuzhou Normal University) ;
  • Lu, Zhongxue (School of Mathematical Science Xuzhou Normal University)
  • Received : 2010.07.30
  • Published : 2011.11.30

Abstract

We establish the local well-posedness for the Cauchy problem of the nonlinear Schr$\ddot{o}$odinger equation with harmonic potential in $H^s(\mathbb{R}^n)$, where $s{\in}\mathbb{R}$, s > 0.

Acknowledgement

Supported by : NSF of Jiangsu Province, Natural Science Foundation of China

References

  1. J. Bergh and J. Lofstom, Interpolation Spaces, Springer, New York, 1976.
  2. R. Carles, Semi-classical Schrodinger equations with harmonic potential and nonlinear perturbation, Ann. Inst. H. Poincare Anal. Non Lineaire 20 (2003), no. 3, 501-542. https://doi.org/10.1016/S0294-1449(02)00027-6
  3. R. Carles, Semi-classical Schrodinger equations with harmonic potential and nonlinear perturbation, Anim. Ecol. 44 (1975), 283-295. https://doi.org/10.2307/3863
  4. R. Carles, Remarks on nonlinear Schrodinger equations with harmonic potential, Ann. Henri Poincare 3 (2002), no. 4, 757-772. https://doi.org/10.1007/s00023-002-8635-4
  5. T. Cazenave, Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
  6. T. Cazenave and A. Maraux, An Introduction to Semilinear Evolution Equation, Clarendon Press. Oxford, 1998.
  7. T. Cazenave and F. B. Weissler, The Cauchy Problem for the Critical Nonlinear Schrodinger Equations in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807-836. https://doi.org/10.1016/0362-546X(90)90023-A
  8. Y. G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrodinger equations with potentials, J. Differential Equations 81 (1989), no. 2, 255-274. https://doi.org/10.1016/0022-0396(89)90123-X
  9. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.