DOI QR코드

DOI QR Code

NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED INTEGER SYMMETRIC DUALITY

  • Gulati, Tilak Raj (DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY) ;
  • Gupta, Shiv Kumar (DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY)
  • Received : 2008.04.26
  • Accepted : 2010.05.05
  • Published : 2011.01.01

Abstract

In this paper, a pair of Wolfe type nondifferentiable sec-ond order symmetric minimax mixed integer dual problems is formu-lated. Symmetric and self-duality theorems are established under $\eta_1$-bonvexity/$\eta_2$-boncavity assumptions. Several known results are obtained as special cases. Examples of such primal and dual problems are also given.

Keywords

nonlinear programming;symmetric duality;minimax programming;self-duality;$\eta$-bonvexity

References

  1. I. Ahmad and Z. Husain, On symmetric duality in nondifferentiable mathematical pro-gramming with F-convexity, J. Appl. Math. Comput. 19 (2005), no. 1-2, 371-384. https://doi.org/10.1007/BF02935812
  2. E. Balas, Minimax and duality for linear and nonlinear mixed-integer programming, Integer and nonlinear programming, pp. 385-418. North-Holland, Amsterdam, 1970.
  3. M. S. Bazaraa and J. J. Goode, On symmetric duality in nonlinear programming, Operations Res. 21 (1973), 1-9. https://doi.org/10.1287/opre.21.1.1
  4. S. Chandra and Abha, Non-differentiable symmetric duality in minimax integer programming, Opsearch 34 (1997), no. 4, 232-241. https://doi.org/10.1007/BF03398528
  5. G. B. Dantzig, E. Eisenberg, and R. W. Cottle, Symmetric dual nonlinear programs, Pacific J. Math. 15 (1965), 809-812. https://doi.org/10.2140/pjm.1965.15.809
  6. W. S. Dorn, A symmetric dual theorem for quadratic programming. Journal of Operational Research Society, Japan. 2 (1960), 93-97.
  7. T. R. Gulati and S. K. Gupta, Wolfe type second-order symmetric duality in nondiffer-entiable programming, J. Math. Anal. Appl. 310 (2005), no. 1, 247-253. https://doi.org/10.1016/j.jmaa.2005.02.004
  8. M. A. Hanson, Second order invexity and duality in mathematical programming, Opsearch 30 (1993), 313-320.
  9. S. H. Hou and X. M. Yang, On second-order symmetric duality in nondifferentiable programming, J. Math. Anal. Appl. 255 (2001), no. 2, 491-498. https://doi.org/10.1006/jmaa.2000.7242
  10. O. L. Mangasarian, Second-and higher-order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975), no. 3, 607-620. https://doi.org/10.1016/0022-247X(75)90111-0
  11. S. K. Mishra, Second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 127 (2000), no. 3, 507-518. https://doi.org/10.1016/S0377-2217(99)00334-3
  12. B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974), no. 2-3, 90-99.
  13. X. M. Yang, X. Q. Yang, and K. L. Teo, Non-differentiable second order symmetric duality in mathematical programming with F-convexity, European J. Oper. Res. 144 (2003), no. 3, 554-559. https://doi.org/10.1016/S0377-2217(02)00156-X

Cited by

  1. On second order duality of minimax fractional programming with square root term involving generalized B-(p, r)-invex functions vol.244, pp.2, 2016, https://doi.org/10.1007/s10479-016-2147-y