DOI QR코드

DOI QR Code

ON RIEMANNIAN MANIFOLDS OF CONSTANT NEGATIVE CURVATURE

  • Mirzaie, Reza (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCES I. KH. INTERNATIONAL UNIVERSITY)
  • Received : 2008.12.20
  • Published : 2011.01.01

Abstract

In this paper, we study the fundamental group and orbits of cohomogeneity two Riemannian manifolds of constant negative curvature.

Keywords

Riemannian manifold;Lie group;sectional curvature

References

  1. A. V. Alekseevsky and D. V. Alekseevsky, G-manifolds with one-dimensional orbit space, Lie groups, their discrete subgroups, and invariant theory, 1-31, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992.
  2. A. V. Alekseevsky and D. V. Alekseevsky, Riemannian G-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), no. 3, 197-211.
  3. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.
  4. J. Berndt, S. Console, and C. Olmos, Submanifolds and Holonomy, Chapman & Hall/CRC Research Notes in Mathematics, 434. Chapman & Hall/CRC, Boca Raton, FL, 2003.
  5. M. P. do Carmo, Riemannian Geometry, Birkhauser Boston, Inc., Boston, MA, 1992.
  6. A. J. Di Scala and C. Olmos, The geometry of homogeneous submanifolds of hyperbolic space, Math. Z. 237 (2001), no. 1, 199-209. https://doi.org/10.1007/PL00004860
  7. P. Eberlein, Geodesic follows in manifolds of nonpositive curvature, http://www.math.unc.edu/faculty/pbe/ams.
  8. S. Kobayashi, Homogeneous Riemannian manifolds of negative curvature, Tohoku Math. J. (2) 14 (1962), 413-415. https://doi.org/10.2748/tmj/1178244077
  9. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Vol II, Interscience Publishers John Wiley & Sons, Inc., New York, 1963, 1969.
  10. P. W. Michor, Isomrtric actions of Lie groups and invariants, Lecture course at the university of Vienna, 1996/1997, http://www.mat.univie.ac.at/~michor/tgbook.ps.
  11. R. Mirzaie, Cohomogeneity two actions on flat Riemannian manifolds, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 9, 1587-1592. https://doi.org/10.1007/s10114-007-0952-6
  12. R. Mirzaie and S. M. B. Kashani, On cohomogeneity one flat Riemannian manifolds, Glasg. Math. J. 44 (2002), no. 2, 185-190.
  13. B. O'Neil, Semi-Riemannian Geometry: With Applications to Relativity, Pure and Applied Mathematics, 103. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.
  14. E. Podesta and A. Spiro, Some topological properties of cohomogeneity one manifolds with negative curvature, Ann. Global Anal. Geom. 14 (1996), no. 1, 69-79. https://doi.org/10.1007/BF00128196
  15. C. Searle, Cohomogeneity and positive curvature in low dimensions, Math. Z. 214 (1993), no. 3, 491-498. https://doi.org/10.1007/BF02572419
  16. J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.
  17. J. A. Wolf, Homogeneity and bounded isometries in manifolds of negative curvature, Illinois J. Math. 8 (1964), 14-18.

Cited by

  1. Topology of orbits and orbit spaces of some product G-manifolds vol.149, pp.3-4, 2016, https://doi.org/10.1007/s00229-015-0786-y
  2. Actions without nontrivial singular orbits on Riemannian manifolds of negative curvature vol.147, pp.1, 2015, https://doi.org/10.1007/s10474-015-0520-y