Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Received : 2011.07.17
  • Accepted : 2011.09.20
  • Published : 2011.12.31


This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.


  1. M. Mazandarani, T. M. I. Mahlia, W. T. Chong, and M. Moghavvemi, Renewable and Sustainable Energy Reviews 14, 1814 (2010).
  2. H. Ghorashi and A. Rahimi, Renewable and Sustainable Energy Reviews 15, 729 (2011).
  3. M. Arifujjaman, M. T. Iqbal, and J. E. Quaicoe, J. Applied Energy 86, 1617 (2009).
  4. J. R. Bumby and R. Martin, IEE Proc. Electr. Power Appl. 152, 1065 (2005).
  5. Y. Chen, P. Pillay, and A. Khan, IEEE Trans. Ind. Appl. 41, 1619 (2005).
  6. L. Soderlund and J.-T. Eriksson, IEEE Trans. Magn. 32, 2389 (1996).
  7. M. Abbasian, A. H. Isfahani, S. Shahghasemi, and F. Sheikholeslam, Przeglad Elektrotechniczny 87, 360 (2011).
  8. J. Chen, C. V. Nayar, and L. Xu, IEEE Trans. Magn. 36, 3802 (2000).
  9. H. Jung, C.-G. Lee, S.-C. Hahn, and S.-Y. Jung, J. Electrical Engineering & Technology 3, 552 (2008).
  10. S.-Y. Jung, H. Jung, S.-C. Hahn, H.-K. Jung, and C.-G. Lee, IEEE Trans. Magn. 44, 1062 (2008).
  11. S. Eriksson and H. Bernhoff, Applied Energy 88, 265 (2011).
  12. J. L. F. Vanderveen, L. J. J. Offringa, and A. J. A. Vandenput, IEE Proc. Electr. Power Appl. 144, 331 (1997).
  13. J. Zhang, M. Cheng, and Z. Chen, J. Energy Conversion and Management 49, 2100 (2008).
  14. X. Sun, M. Cheng, W. Hua, and L. Xu, IEEE Trans. Magn. 45, 4613 (2009).
  15. E. Spooner, A. C. Williamson, and G. Catto, IEE Proc. Electr. Power Appl. 143, 1 (1996).
  16. M. A. Khan, Ph. D. dissertation, Dept. Elec. and Comp. Eng., Clarkson Univ., Potsdam, NY (2006).
  17. Iranian Renewable Energy Organization (SUNA), Tehran, Iran (2010).
  18. A. Mostafaeipoura, A. Sedaghatb, A. A. Dehghan-Niri, and V. Kalantarc, Renewable and Sustainable Energy Reviews 15, 2545 (2011).
  19. T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook, John Wiley & Sons, West Sussex (2001).
  20. A. H. Isfahani and S. Vaez-Zadeh, J. Energy 34, 1755 (2009).

Cited by

  1. Multi-objective design optimization of a large-scale directdrive permanent magnet generator for wind energy conversion systems vol.8, pp.2, 2014,