DOI QR코드

DOI QR Code

Antioxidant and Xanthine Oxidase Inhibition Activities of Cynomorium songaricum Extracts

  • Seo, Soo-Jung (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Han, Mi-Ra (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Lee, Yang-Suk (Department of Herbal Biotechnology, Daegu Haany University)
  • Received : 2011.08.17
  • Accepted : 2011.10.01
  • Published : 2011.12.31

Abstract

In this study, we evaluated the antioxidant activities and xanthine oxidase inhibition effects of water and ethanol extracts of Cynomorium songaricum. The ethanol extract of C. songaricum (EE) contained more phenolic and flavonoid compounds than the water extract (WE). The antioxidant activities of the extracts were increased as the concentration of the extract increased. The WE has better effectiveness than the EE for DPPH free radical scavenging activity and nitrite scavenging ability. The nitrite scavenging abilities of WE were 90.02% ($EC_{50}$ 653.15 ${\mu}g$/mL) at conditions of pH 1.2 and 2,000 ${\mu}g$/mL, and 84.34% ($EC_{50}$ 817.17 ${\mu}g$/mL) at pH 3.0. The EE has more effective SOD-like activity and XO inhibition than WE. The SOD-like activity of EE was 81.47% at a concentration of 2,000 ${\mu}g$/mL, $EC_{50}$ was 951.70 ${\mu}g$/mL. The xanthine oxidase inhibition of the EE, with an $EC_{50}$of 112.47 ${\mu}g$/mL, is greater than that of ascorbic acid, which was 192.50 ${\mu}g$/mL (p<0.05). These results suggest that the C. songaricum is a potentially useful antioxidant source for the development of nutraceuticals and medicines.

Acknowledgement

Supported by : Haany University Kylin Foundation

References

  1. Halliwell B, Gutteridge JM. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14. https://doi.org/10.1042/bj2190001
  2. Ceruitti PP. 1991. Oxidant stress and carcinogenesis. Eur J Clin Invest 21: 1-11. https://doi.org/10.1111/j.1365-2362.1991.tb01350.x
  3. Simic MG. 1988. Mechanism of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res 202: 377-386. https://doi.org/10.1016/0027-5107(88)90199-6
  4. Tadhani MB, Patel VH, Subhash R. 2007. In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Compos Anal 20: 323-329. https://doi.org/10.1016/j.jfca.2006.08.004
  5. Rice-Evans CA, Miller HJ, Oaganga G. 1996. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  6. Azuma K, Nakayama M, Koshika M, Lpoushi K, Yamaguchi Y, Kohata K, Yamaguchi Y, Ito H, Higashio H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem 47: 3963-3966. https://doi.org/10.1021/jf990347p
  7. Bravo L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333.
  8. Imaida K, Fukushima S, Shirui T, Ohtani M, Nakanishi K, Ito N. 1983. Promoting activities of butylated hydroxyanisole and butylated hydroxytoluene on 2-stage urinary bladder carcinogenesis and inhibition of gamma-glutamyl transpeptidase-positive foci development in the liver of rats. Carcinogenesis 4: 895-899. https://doi.org/10.1093/carcin/4.7.895
  9. Omaye ST, Reddy KA, Cross CE. 1997. Effect of butylated hydroxytoluene and other antioxidants on mouse lung metabolism. J Toxicol Environ Health 3: 829-836.
  10. Kuijt J. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley, CA, USA. p 246.
  11. Ma C, Jian S, Zhang Y, Sun T. 1992. Triterpenes and other constituents from Cynomorium songaricum. Chin Chem Lett 3: 281-282.
  12. Jiang ZH, Tanaka T, Sakamoto M, Jiang T, Kouno I. 2001. Studies on a medicinal parasitic plant: lignans from the stems of Cynomorium songaricum. Chem Pharm Bull 49: 1036-1038. https://doi.org/10.1248/cpb.49.1036
  13. Chu Q, Tian X, Lim M, Ye J. 2006. Electromigration profiles of Cynomorium songaricum based on capillary electrophoresis with amperometric detection. J Agric Food Chem 54: 7979-7983. https://doi.org/10.1021/jf061574b
  14. Volker S, Dan B, Andrew E, Randall B. 2009. Chinese herbal medicine: formulas and strategies. 2th ed. Eastland Press, Seattle, WA, USA. p 341-342.
  15. Qi Y, Su GE. 2000. Progress in the research of Cynomorium (Cynomorium songaricum). Zhongcaoyao 31: 146-148.
  16. Ma C, Nakamura N, Miyashiro H, Hattori M, Shimotohno K. 1999. Inhibitory effects of constituents from Cynomorium songaricum and related triterpene derivatives on HIV-1 protease. Chem Pharm Bull 47: 141-145. https://doi.org/10.1248/cpb.47.141
  17. Sheng W, Liu BR, Xu DS. 2000. Comparison of the antiaging effects of nature and laborious cultivation Cynomorium songaricum. J Med Pharm Chin Min 6: 39-40.
  18. Lu Y, Wang Q, Melzig MF, Siems KJ. 2009. Extracts of Cynomorium songaricum protect SK-N-SH human neuroblastoma cells against staurosporine-induced apoptosis potentially through their radical scavenging activity. Phytother Res 23: 257-261. https://doi.org/10.1002/ptr.2605
  19. AOAC. 2005. Official method of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA. Vol 45, p 21-22.
  20. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  21. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  22. Kato H, Lee IE, Chuyen, NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338. https://doi.org/10.1271/bbb1961.51.1333
  23. Marklund S, Marklund G. 1975. Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  24. Stirpe F, Corte ED. 1969. The regulation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3861.
  25. Yagi A, Kanbara T, Morinobu N. 1987. Inhibition of mushroom- tyrosinase by aloe extract. Planta Med 53: 517-519. https://doi.org/10.1055/s-2006-962799
  26. Cai Y, Luo, Q, Su M, Corke H. 2004. Antioxidant activity and phenolic compounds of 112 Chinese medicinal plants associated with anticancer. Life Sci 74: 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  27. Bang IS, Park HY, Yuh, CS, Kim AJ, Yu CY, Ghimire B, Lee HS, Park SG, Choung SG, Lim JD. 2007. Antioxidant activity and phenolic compounds composition of extracts from mulberry (Morus alba L.) fruit. Kor J Med Crop Sci 15: 120-127.
  28. Wong CC, Li HB, Chen KW, Chen F. 2006. A systematic survey of antioxidant activity of 30 Chinese medicinal plant using the ferric reducing antioxidant power assay. Food Chem 97: 705-711. https://doi.org/10.1016/j.foodchem.2005.05.049
  29. Yamaguchi T, Takamura H, Matoba T, Terao J. 1998. HPLC method for evaluation of the free radical scavenging activity of foods by using 1,1-dipenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62: 1201-1204. https://doi.org/10.1271/bbb.62.1201
  30. Beckman JS, Koppenol WH. 1996. Nitric oxide, superoxide and peroxynitrite: The good, the bad, and ugly. An J Physiol 217: C1424-C1437.
  31. Nagamim H, Umakoshi H, Shinmanouchi T, Kuboi T. 2004. Variable SOD-like activity of natural antioxidants. Biosci Biotechnol Biochem 59: 822-826.
  32. Storch I, Ferber E. 1988. Detergent-amplified chemiluminescence of lucigenin for determination of superoxide amino production by NADPH oxidase and xanthine oxidase. Anal Biochem 169: 262-267. https://doi.org/10.1016/0003-2697(88)90283-7
  33. Filha ZS, Vitolo If, Fietto LG, Lombardi JA, Saude DA. 2006. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ('Arnica'). J Ethnopharmacol 107: 79-82. https://doi.org/10.1016/j.jep.2006.02.011
  34. Umamahesware M, Asokkiar K. Somasundaram A, sivashanmugam T, subhadradevi V, Ravi TK. 2006. Xanthine oxidase inhibitory activity of some Indian medical plant. J Ethnopharmacol 109: 547-551.
  35. Funasaka Y, Komoto M, Ichihashi M. 2000. Depigmenting effect of α-tocopheryl ferulate on normal human melanocytes. Pigment Cell Res 13: 170-174. https://doi.org/10.1111/j.0893-5785.2000.130830.x
  36. Kim YJ, Kang KS, Yokozawa T. 2008. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem Toxicol 46: 2466-2471. https://doi.org/10.1016/j.fct.2008.04.002