DOI QR코드

DOI QR Code

Theoretical Study for Structures and Spectroscopic Properties of C60(CH2)nOH (n=0~2) and C60(OH)2

C60(CH2)nOH (n=0~2)와 C60(OH)2의 분자구조 및 분광학적 성질에 관한 이론 연구

  • Received : 2011.08.12
  • Accepted : 2011.10.13
  • Published : 2011.12.20

Abstract

The possible minimum structures of $C_{60}(CH_2)_nOH$ (n=0~2) and $C_{60}(OH)_2$have been optimized using density functional theory (DFT) with the 6-311G (d,f) basis set. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies (ZPVE) have been considered to predict the binding energies. The predicted binding energy of $C_{60}CH_2OH$ is about 10 kcal/mol more stable than the binding energy of $C_{60}OH$.

Keywords

$C_{60}(CH_2)_nOH$;$C_{60}(OH)_2$;DFT;Binding energy

References

  1. Kroto, H. W.; Health, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318(6042), 162. https://doi.org/10.1038/318162a0
  2. Murata, Y.; Murata, M.; Komatsu K. J. Am. Chem. Soc. 2003, 125, 7152. https://doi.org/10.1021/ja0354162
  3. Friedman, S. H.; Ganapathi, P. S.; Rubin, Y.; Kenyon, G. L. J. Med. Chem. 1998, 41, 2442. https://doi.org/10.1021/jm980179c
  4. Chen, H. C.; Yu, C.; Veng, T. H.; Chen, S.; Huang, K. J.; Chiang, L. Y. Toxicol. Pathol. 1998, 26, 143. https://doi.org/10.1177/019262339802600117
  5. Miyata, N.; Yamakoshi, Y. In Fullerenes: Recent AdVances in the Chemistry and Physics of Fullerenes and Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical Society: Pennington, NJ, 1995; Vol. 5, p 345.
  6. Chiang, L. Y.; Upasani, R. B.; Swirczewsky, J. W.; Soled, S. J. Am. Chem. Soc. 1992, 114, 10154. https://doi.org/10.1021/ja00052a010
  7. Chiang, L. Y.; Swirczewsky, J. W.; Hsu, C. S.; Chowdhury, S. K.; Cameron, S.; Creegan, K. J. Chem. Soc., Chem. Commun. 1992, 1791.
  8. Chiang, L. Y.; Upasani, R. B.; Swirczewsky, J. W.; Soled, S. J. Am. Chem. Soc. 1993, 115, 5453. https://doi.org/10.1021/ja00066a014
  9. Chiang, L. Y.; Wang, L. Y.; Swirczewski, J. W. J. Org. Chem. 1994, 59, 3960. https://doi.org/10.1021/jo00093a030
  10. Chiang, L. Y.; Bhonsle, J. B.; Wang, L. Y.; Shu, S. F.; Chang, T. M.; Hwu, J. R. Tetrahedron 1996, 52, 4963. https://doi.org/10.1016/0040-4020(96)00104-4
  11. Chen, B. H.; Huang, J. P.; Wang, L. Y.; Shiea, J.; Chen, T. L.; Chiang, L. Y. J. Chem. Soc. Perkin Trans. 1998, 1, 1171.
  12. Lai, H. S.; Chen, W. J.; Chiang, L. Y. World J. Surg. 2000, 24, 450. https://doi.org/10.1007/s002689910071
  13. Hinokuma, K.; Ata, M. Chem. Phys. Lett. 2001, 341, 442. https://doi.org/10.1016/S0009-2614(01)00549-8
  14. Li, Y. M.; Hinokuma, K. Solid State Ionics 2002, 150, 309. https://doi.org/10.1016/S0167-2738(02)00449-6
  15. Rincon, M. E.; Hu, H.; Campos, J.; Ruiz-Garcia, J. J. Phys. Chem. B 2003, 107, 4111. https://doi.org/10.1021/jp022159z
  16. Meier, M. S.; Kiegiel, J. Org. Lett. 2001, 3, 1717. https://doi.org/10.1021/ol0159120
  17. Xing, G.; Zhang, J.; Zhao, Y.; Tang, J.; Zhang, B.; Gao, X.; Yuan, H.; Qu, L.; Cao, W.; Chai, Z.; Ibrahim, K.; Su, R. J. Phys. Chem. B 2004, 108, 11473. https://doi.org/10.1021/jp0487962
  18. Wang, B.-C.; Cheng, C.-Y. J. Mol. Struct. (Theochem) 1997, 391, 179. https://doi.org/10.1016/S0166-1280(96)04800-2
  19. Rodriguez-Zavala, J. G.; Guirado-López. R. A. J. Phys. Chem. A 2006, 30, 9459.
  20. Fileti, E. E.; Rivelino, R. Chem. Phys. Lett. 2009, 467, 339. https://doi.org/10.1016/j.cplett.2008.11.035
  21. Jung, D.-J.; Kim, K.-I; Seong, M.-K.; Choi, S.-H. J. Appl. Polym. Sci. 2011, 122, 1785. https://doi.org/10.1002/app.34225
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  23. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  24. Frisch, M. J.; et al. GAUSSIAN 03, revision A; Gaussian, Inc.: Pittsburgh, PA, 2003.

Acknowledgement

Supported by : 한남대학교