DOI QR코드

DOI QR Code

The Future of Planetary Entry Technology

  • Park, Chul (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2011.09.30

Abstract

This is a written version of an hour-long lecture delivered by the author on June 30, 2011, as Plasmadynamics and Lasers Award Lecture at the AIAA 2011 summer conference in Honolulu, Hawaii. The author proposes that two areas of planetary entry physics be pursued in the future: outer planet aero-capturing and study of aerodynamics of meteoroid entries, both for the purpose of advancing the understanding of the possible extraterrestrial seeding of building blocks of life. For outer planet aero-capturing, the author proposes to develop new shock tube facilities that will produce up to 30 km/s of shock speed without causing photo-ionization of the driven gas by the radiation from the hot driver gas. Regarding meteors, the author proposes to carry out laboratory testing of the Tunguska event and of the seeding of amino acid molecules using a ballistic range which shoots a snowball laden with amino acid molecules toward a water surface.

References

  1. Al-Mufti, S., Olavesen, A. H., Hoyle, F., and Wickramasinghe, N. C. (1982). Interstellar absorptions at ${\lambda}=3.2{\mu}m\;and\;3.3{\mu}m$. Astrophysics and Space Science, 84, 259-261. https://doi.org/10.1007/BF00713643
  2. Avetisov, V. A., Goldanskii, V. I., and Kuz'min, V. V. (1991). Handedness, origin of life and evolution. Physics Today, 44, 33-41.
  3. Baldwin, B. and Sheaffer, Y. (1971). Ablation and breakup of large meteoroids during atmospheric entry. Journal of Geophysical Research, 76, 4653-4668. https://doi.org/10.1029/JA076i019p04653
  4. Basiuk, V. A. (2001). Formation of amino acid precursors in the interstellar medium. A DFT study of some gas-phase reactions starting with methylenimine. Journal of Physical Chemistry A, 105, 4252-4258. https://doi.org/10.1021/jp004116t
  5. Belloche, A., Menten, K. M., Comito, C., Muller, H. S. P., Schilke, P., Ott, J., Thorwirth, S., and Hieret, C. (2008). Detection of amino acetonitrile in Sgr B2(N). Astronomy and Astrophysics, 482, 179-196. https://doi.org/10.1051/0004-6361:20079203
  6. Blank, J. G., Miller, G. H., Ahrens, M. J., and Winans, R. E. (2001). Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Origins of Life and Evolution of the Biosphere, 31, 15-51. https://doi.org/10.1023/A:1006758803255
  7. Bogdanoff, D. W. and Park, C. (2002). Radiative interaction between driver and driven gases in an arc-driven shock tube. Shock Waves, 12, 205-214. https://doi.org/10.1007/s00193-002-0157-y
  8. Brack, A. (2000). Life in the universe. In B. Kaldeich-Schurmann, ed. Darwin and Astronomy: The Infrared Space Interferometer: Proceedings of an International Symposium, Stockholm, Sweden, 17-19 November 1999 (European Space Agency Special Publication SP-451). Noordwijk: ESA Publications. pp. 151-158.
  9. Brack, A. (2007). From interstellar amino acids to prebiotic catalytic peptides: a review. Chemistry and Biodiversity, 4, 665-679. https://doi.org/10.1002/cbdv.200790057
  10. Bredehoeft, J. H. and Meierhenrich, U. J. (2008). Amino acid structures from UV irradiation of simulated interstellar ices. In N. Takenaka, ed. Recent Developments of Chemistry and Photochemistry in Ice. Trivandrum, Kerala, India: Transworld Research Network. pp. 175-202.
  11. Breslow, R. (2011). A likely possible origin of homochirality in amino acids and sugars on prebiotic earth. Tetrahedron Letters, 52, 2028-2032. https://doi.org/10.1016/j.tetlet.2010.08.094
  12. Chyba, C. F. (1997a). A left-handed Solar System? Nature, 389, 234-235.
  13. Chyba, C. F. (1997b). Life on other moons. Nature, 385, 201. https://doi.org/10.1038/385201a0
  14. Chyba, C. F. (2000). Energy for microbial life on Europa. Nature, 403, 381-382. https://doi.org/10.1038/35000281
  15. Chyba, C. F., Thomas, P. J., Brookshaw, L., and Sagan, C. (1990). Cometary delivery of organic molecules to the early Earth. Science, 249, 366-373. https://doi.org/10.1126/science.11538074
  16. Chyba, C. F., Thomas, P. J., and Zahnle, K. J. (1993). The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361, 40-44. https://doi.org/10.1038/361040a0
  17. Cohen, J. (1995). Getting all turned around over the origins of life on Earth. Science, 267, 1265-1266. https://doi.org/10.1126/science.7871419
  18. Cooper, D. M., Borucki, W. J., and Chien, K. Y. (1972). Radiative cooling of shock-heated air in an explosively driven shock tube. Physics of Fluids, 15, 39-43. https://doi.org/10.1063/1.1693751
  19. Drobyshevski, E. M. (2009). Tunguska-1908 and similar events in light of the New Explosive Cosmogony of minor bodies. Astrophysics-Earth and Planetary Astrophysics, eprint arXiv:0903.3309.
  20. Elsila, J. E., Dworkin, J. P., Bernstein, M. P., Martin, M. P., and Sandford, S. A. (2007). Mechanisms of amino acid formation in interstellar ice analogs. Astrophysical Journal, 660, 911-918. https://doi.org/10.1086/513141
  21. Engel, M. H. and Macko, S. A. (1997). Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature, 389, 265-268. https://doi.org/10.1038/38460
  22. Engel, M. H., Macko, S. A., and Silfer, J. A. (1990). Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature, 348, 47-49. https://doi.org/10.1038/348047a0
  23. Engel, M. H. and Nagy, B. (1982). Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature, 296, 837-840. https://doi.org/10.1038/296837a0
  24. Fay, J. A., Moffatt, W. C., and Probstein, R. F. (1964). An analytical study of meteor entry. AIAA Journal, 2, 845-854. https://doi.org/10.2514/3.2449
  25. Furudate, M., Chang, K. S., and Jeung, I. S. (2005). Calculation of H2-He flow with nonequilibrium ionization and radiation. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. pp. 2703-2712.
  26. Glavin, D. P., Dworkin, J. P., and Sandford, S. A. (2008). Detection of cometary amines in samples returned by Stardust. Meteoritics and Planetary Science, 43, 399-413. https://doi.org/10.1111/j.1945-5100.2008.tb00629.x
  27. Goldanskii, V. I. (1977). Interstellar grains as possible cold seeds of life. Nature, 269, 583-584. https://doi.org/10.1038/269583a0
  28. Goldanskii, V. I. (1996). Cold prebiotic evolution, tunneling, chirality and exobiology. AIP Conference Proceedings, 379, 211-230.
  29. Hills, J. G. and Goda, M. P. (1993). The fragmentation of small asteroids in the atmosphere. Astronomical Journal, 105, 1114-1144. https://doi.org/10.1086/116499
  30. Hollis, B. R., Wright, M. J., Olejniczak, J., Takashima, N., Sutton, K., and Prabhu, D. (2004). Preliminary convectiveradiative heating environments for a Neptune aerocapture mission. Collection of Technical Papers--AIAA Atmospheric Flight Mechanics Conference, Providence, RI. pp. 1040-1051.
  31. Iglesias-Groth, S., Cataldo, F., Ursini, O., and Manchado, A. (2010). Amino acids in comets and meteorites: stability under gamma radiation and preservation of chirality. Physics-Biological Physics, eprint arXiv:1007.4529v1.
  32. Iglesias-Groth, S., Cataldo, F., Ursini, O., and Manchado, A. (2011). Amino acids in comets and meteorites: stability under gamma radiation and preservation of the enantiomeric excess. Monthly Notices of the Royal Astronomical Society, 410, 1447-1453.
  33. Ilczuk, Z. (1976). A biogenic synthesis of amino acids in space. Postepy Astronautyki, 9, 115-117.
  34. Irwin, L. N. and Schulze-Makuch, D. (2001). Assessing the plausibility of life on other worlds. Astrobiology, 1, 143-160. https://doi.org/10.1089/153110701753198918
  35. Ivanov, A. G. and Ryzhanskii, V. A. (1995). possible nature of bursting of the Tunguska meteorite and breakup of the shoemaker-levy comet. Fizika Goreniya I Vzryva, 31, 117-124.
  36. Jones, N., Mogul, R., Gilbert, D., Curtis, R., Seitz, J., and DiStefano, R. (2011). Finding life in our solar system. 241th American Chemical Society National Meeting and Exposition, Anaheim, CA.
  37. Kim, J. G., Kwon, O. J., and Park, C. (2009). Master equation study and nonequilibrium chemical reactions for H + H2 and He + H2. Journal of Thermophysics and Heat Transfer, 23, 443-453. https://doi.org/10.2514/1.41741
  38. Kim, J. G., Kwon, O. J., and Park, C. (2010). Master equation study and nonequilibrium chemical reactions for hydrogen molecule. Journal of Thermophysics and Heat Transfer, 24, 281-290. https://doi.org/10.2514/1.45283
  39. Knowles, D. J., Wang, T., and Bowie, J. H. (2010). Radical formation of amino acid precursors in interstellar regions? Ser, Cys and Asp. Organic and Biomolecular Chemistry, 8, 4934-4939. https://doi.org/10.1039/c0ob00232a
  40. Kobayashi, K. (2008). Capture and exposure of extraterrestrial organic compounds by utilizing international space station. Viva Origino, 36, 77-82.
  41. Kobayashi, K., Kaneko, T., Takahashi, J., Takano, Y., and Yoshida, S. (2010). High-molecular-weight complex organics in interstellar space and their relevance to origins of life. In V. A. Basiuk, ed. Astrobiology: Emergence, Search and Detection of Life. Stevenson Ranch: American Scientific Publishers. pp. 175-186.
  42. Lattelais, M., Risset, O., Pilme, J., Pauzat, F., Ellinger, Y., Sirotti, F., Silly, M., Parent, P., and Laffon, C. (2011). The survival of glycine in interstellar ices: a coupled investigation using NEXAFS experiments and theoretical calculations. International Journal of Quantum Chemistry, 111, 1163-1171. https://doi.org/10.1002/qua.22609
  43. Lee, C. W., Kim, J. K., Moon, E. S., Minh, Y. C., and Kang, H. (2009). Formation of glycine on ultraviolet-irradiated interstellar ice-analog films and implications for interstellar amino acids. Astrophysical Journal, 697, 428-435. https://doi.org/10.1088/0004-637X/697/1/428
  44. Leibowitz, L. P. (1973). Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture. Physics of Fluids, 16, 59-68. https://doi.org/10.1063/1.1694174
  45. Livingston, F. R. and Poon, P. T. Y. (1976). Relaxation distance and equilibrium electron density measurements in hydrogen-helium plasmas. AIAA Journal, 14, 1335-1337. https://doi.org/10.2514/3.61466
  46. Lunine, J. I. (2009). Saturn's titan: a strict test for life's cosmic ubiquity. Astrophysics-Earth and Planetary Astrophysics, eprint arXiv:0908.0762v2.
  47. Martins, Z. (2011). Organic chemistry of carbonaceous meteorites. Elements, 7, 35-40. https://doi.org/10.2113/gselements.7.1.35
  48. Matsuyama, S., Ohnishi, N., Sasoh, A., and Sawada, K. (2005). Numerical simulation of galileo probe entry flowfield with radiation and ablation. Journal of Thermophysics and Heat Transfer, 19, 28-35. https://doi.org/10.2514/1.10264
  49. McKay, C. P. and Smith, H. D. (2005). Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus, 178, 274-276. https://doi.org/10.1016/j.icarus.2005.05.018
  50. Meierhenrich, U. J. (2002). Comets and terrestrial life. Nachrichten aus der Chemie, 50, 338-341.
  51. Meierhenrich, U. J. (2009). Traces from outer space. Amino acids and the emergence of life. Chemie in Unserer Zeit, 43, 204-209. https://doi.org/10.1002/ciuz.200900482
  52. Melott, A. L., Thomas, B. C., Dreschhoff, G., and Johnson, C. K. (2010). Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event. Geology, 38, 355-358. https://doi.org/10.1130/G30508.1
  53. Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117, 528-529. https://doi.org/10.1126/science.117.3046.528
  54. Munoz Caro, G. M. and Martinez-Frias, J. (2007). Carbonaceous dust in planetary systems: origin and astrobiological significance. In A. Wilson, ed. Workshop on Dust in Planetary Systems, 26-30 September 2005, Kauai, Hawaii (European Space Agency Special Publication SP-643). Noordwijk: ESA Publications. pp. 133-138.
  55. Neish, C. D. (2008). Formation of Prebiotic Molelcules in Liquid Water Environments on the Surface of Titan. PhD Thesis, University of Arizona.
  56. Norman, L. H. (2011). Is there life on ... Titan? Astronomy and Geophysics, 52, 1.39-31.42. https://doi.org/10.1111/j.1468-4004.2011.52139.x
  57. Oberbeck, V. R. and Aggarwal, H. (1991). Comet impacts and chemical evolution on the bombarded Earth. Origins of Life and Evolution of Biospheres, 21, 317-338. https://doi.org/10.1007/BF01808305
  58. Owen, T. (2008). The contributions of comets to planets, atmospheres, and life: insights from Cassini-Huygens, Galileo, Giotto, and inner planet missions. Space Science Reviews, 138, 301-316. https://doi.org/10.1007/s11214-008-9306-7
  59. Park, C. (1990). Nonequilibrium Hypersonic Aerothermodynamics. New York: Wiley. pp. 89-92.
  60. Park, C. (2004). Effect of lyman radiation on nonequilibrium ionization of atomic hydrogen. 37th AIAA Thermophysics Conference, Portland, OR.
  61. Park, C. (2010). Nonequilibrium ionization and radiation in hydrogen-helium mixtures. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL.
  62. Park, C. (2011a). An approximation for ionization rate in a hydrogen-helium mixture. 42nd AIAA Thermophysics Conference, Honolulu, HI.
  63. Park, C. (2011b). Nonequilibrium chemistry and radiation in neptune entry. Journal of Spacecraft and Rockets in press.
  64. Park, C. (2011c). Viscous shock layer calculation of stagnation-region heating environment in neptune aerocapture. Journal of Spacecraft and Rockets in press.
  65. Park, C. and De Rose, C. E. (1980). Shape Change of Galileo Probe Models in Free-Flight Tests (NASA Technical Memorandum 81209). National Aeronautics and Space Administration.
  66. Pierazzo, E. and Chyba, C. F. (1999). Amino acid survival in large cometary impacts. Meteoritics and Planetary Science, 34, 909-918. https://doi.org/10.1111/j.1945-5100.1999.tb01409.x
  67. Pilling, S., Andrade, D. P. P., De Castilho, R. B., Cavasso-Filho, R. L., Lago, A. F., Coutinho, L. H., De Souza, G. G. B., Boechat-Roberty, H. M., and De Brito, A. N. (2008). Survival of gas phase amino acids and nucleobases in space radiation conditions. Astrophysics, eprint arXiv:0803.3751v0801. https://doi.org/10.1017/S1743921308021996
  68. Raulin, F. (2008). Astrobiology and habitability of Titan. Space Science Reviews, 135, 37-48. https://doi.org/10.1007/s11214-006-9133-7
  69. Raulin, F. (2009). Planetary astrobiology-the outer solar system. In J. T. F. Wong and A. Lazcano, eds. Prebiotic Evolution and Astrobiology. Austin: Landes Bioscience. pp. 18-28.
  70. Romig, M. F. (1965). Physics of meteor entry. AIAA Journal, 3, 385-394. https://doi.org/10.2514/3.2877
  71. Ross, D. S. (2006). Cometary impact and amino acid survival--chemical kinetics and thermochemistry. Journal of Physical Chemistry A, 110, 6633-6637. https://doi.org/10.1021/jp054848r
  72. Schulze-Makuch, D., Irwin, L. N., and Guan, H. (2002). Search parameters for the remote detection of extraterrestrial life. Planetary and Space Science, 50, 675-683. https://doi.org/10.1016/S0032-0633(01)00121-0
  73. Shapiro, R. and Schulze-Makuch, D. (2009). The search for Alien life in our solar system: strategies and priorities. Astrobiology, 9, 335-343. https://doi.org/10.1089/ast.2008.0281
  74. Shaw, A. (2008). Life in a different solvent: astrobiology on Titan. Chemistry Review, 17, 2-5.
  75. Shock, E. L. and McKinnon, W. B. (1993). Hydrothermal processing of cometary volatiles-applications to Triton. Icarus, 106, 464-477. https://doi.org/10.1006/icar.1993.1185
  76. Simakov, M. B. (2004). Exobiology of Titan. In K. Fletcher, ed. Titan: from Discovery to Encounter: Proceedings of the International Conference, 13-17 April 2004, Noordwijk, the Netherlands (European Space Agency Special Publication SP-1278). Noordwijk: ESA Publications. pp. 395-407.
  77. Steel, D. (1991). Cometary supply of terrestrial organics: lessons from the K/T and the present epoch. Origins of Life and Evolution of Biospheres, 21, 339-357. https://doi.org/10.1007/BF01808306
  78. Stulov, V. P. (2010). Transformation of the kinetic energy of a meteoroid during its breakup in the atmosphere. Doklady Physics, 55, 366-367. https://doi.org/10.1134/S102833581007013X
  79. Suess, B., Breme, K., and Meierhenrich, U. J. (2005). Biogenesis and evolution, identification of molecular life building blocks in the universe. Bioforum, 28, 45-47.
  80. Thiemann, W. H. and Meierhenrich, U. (2001). ESA mission ROSETTA will probe for chirality of cometary amino acids. Origins of Life and Evolution of Biospheres, 31, 199-210. https://doi.org/10.1023/A:1006718920805
  81. Turco, R. P., Toon, O. B., Park, C., Whitten, R. C., Pollack, J. B., and Noerdlinger, P. (1981). Tunguska meteor fall of 1908: effects on stratospheric ozone. Science, 214, 19-23. https://doi.org/10.1126/science.214.4516.19
  82. Turco, R. P., Toon, O. B., Park, C., Whitten, R. C., Pollack, J. B., and Noerdlinger, P. (1982). An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall. Icarus, 50, 1-52. https://doi.org/10.1016/0019-1035(82)90096-3
  83. Vandenbussche, S., Reisse, J., Bartik, K., and Lievin, J. (2011). The search for a deterministic origin for the presence of nonracemic amino-acids in meteorites: a computational approach. Chirality, 23, 367-373. https://doi.org/10.1002/chir.20933
  84. Vasilyev, N. V. (1998). The Tunguska Meteorite problem today. Planetary and Space Science, 46, 129-150. https://doi.org/10.1016/S0032-0633(97)00145-1
  85. Vazquez, M. (2005). Search for life in the solar system. In M. Vazquez, ed. Fundaments and Challenges in Astrobiology. Kerala, India: Research Signpost. pp. 213-256.
  86. Winans, R. E., Blank, J. G., Ahrens, M. J., and Grey, G. T. (2000). Investigation of the stability of amino acids in possible early earth comet impacts. 219th National American Chemical Society Meeting, San Francisco, CA.
  87. Zahnle, K. and Grinspoon, D. (1990). Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature, 348, 157-160. https://doi.org/10.1038/348157a0
  88. Zhdan, I. A., Stulov, V. P., and Stulov, P. V. (2004a). Characteristic elements of a fractured solid in supersonic flow. Doklady Physics, 49, 680-682. https://doi.org/10.1134/1.1831536
  89. Zhdan, I. A., Stulov, V. P., and Stulov, P. V. (2004b). Aerodynamic interaction of two bodies in a supersonic flow. Doklady Physics, 49, 315-317. https://doi.org/10.1134/1.1763624