DOI QR코드

DOI QR Code

Active and Morphing Aerospace Structures-A Synthesis between Advanced Materials, Structures and Mechanisms

  • Baier, Horst (Institute of Lightweight Structures, Technische Universitaet Muenchen) ;
  • Datashvili, Leri (Institute of Lightweight Structures, Technische Universitaet Muenchen)
  • Published : 2011.09.30

Abstract

Active and shape morphing aerospace structures are discussed with a focus on activities aimed at practical implementation. In active structures applications range from dynamic load alleviation in aircraft and spacecraft up to static and dynamic shape control. In contrast, shape morphing means strong shape variation according to different mission status and needs, aiming to enhance functionality and performance over wide flight and mission regimes. The interaction of required flexible materials with the morphing structure and the actuating mechanisms is specifically addressed together with approaches in design and simulation.

References

  1. Antoulas, A. C. and Sorensen, D. C. (2001). Approximation of large-scale dynamical systems: an overview. International Journal of Applied Mathematics and Computer Science, 11, 1093-1121.
  2. Baier, H., Datashvili, L., and Hoffmann, J. (2009). Mechanically reconfigurable and massively shape morphing space structures. Proceedings of the 11th European Spacecraft Structures, Materials and Mechanical Testing Conference, Toulouse, France.
  3. Bubert, E. A., Woods, B. K. S., Lee, K., Kothera, C. S., and Wereley, N. M. (2010). Design and fabrication of a passive 1D morphing aircraft skin. Journal of Intelligent Material Systems and Structures, 21, 1699-1717. https://doi.org/10.1177/1045389X10378777
  4. Datashvili, L. and Baier, H. (2011). Flexible fiber composites for space structures. In Q. Cheng, ed. Fiber Reinforced Composites. Hauppauge: Nova Science Publishers. p. cited pages.
  5. Datashvili, L., Baier, H., and da Rocha-Schmidt, L. (2011). Multi-scale analysis of structures made of triaxially woven fabric composites with stiff and flexible matrix materials. Proceedings of the 52th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO.
  6. Dornheim, M. A. (1998). Manufacturers see evolutionary change to handle turbulence. Aviation Week and Space Technology (New York), 149, 76.
  7. Friswell, M. I. and Inman, D. J. (2006). Morphing concepts for UAVs. Proceedings of the 21st International Unmanned Air Vehicle Systems Conference, Bristol, UK.
  8. Hasse, A. and Campanile, L. F. (2009). Design of compliant mechanisms with selective compliance. Smart Materials and Structures, 18, 115016. https://doi.org/10.1088/0964-1726/18/11/115016
  9. Hecker, S. and Hahn, K. U. (2007). Advanced gust load alleviation system for large flexible aircraft. Proceedings of the 1st European Air and Space Conference, Berlin, Germany.
  10. Henrichfreise, H., Pohl, D., and Bensch, L. (2003). Gust load alleviation. Proceedings of the VDI Mechatronics Conference, Fulda, Germany.
  11. Huber, M., Neufeld, D., Chung, J., Baier, H., and Behdinan, K. (2010). Data Mining based mutation function for engineering problems with mixed continuous-discretedesign variables. Structural and Multidisciplinary Optimization, 41, 589-604. https://doi.org/10.1007/s00158-009-0439-4
  12. Hutchinson, R. G., Wicks, N., Evans, A. G., Fleck, N. A., and Hutchinson, J. W. (2003). Kagome plate structures for actuation. International Journal of Solids and Structures, 40, 6969-6980. https://doi.org/10.1016/S0020-7683(03)00348-2
  13. Kirn, J., Lorkowski, T., and Baier, H. (2011). Development of flexible matrix composites (FMC) for fluidic actuators in morphing systems. International Journal of Structural Integrity, 2 (accepted).
  14. Kota, S., Osborn, R., Ervin, G., and Maric, D. (2009). Mission Adaptive Compliant Wing--Design, Fabrication and Flight Test. Report No.: RTO-MP-AVT-168. NATO Research and Technology Organisation.
  15. Lim, I. G. and Lee, I. (2009). Aeroelastic analysis of rotor systems using trailing edge flaps. Journal of Sound and Vibration, 321, 525-536. https://doi.org/10.1016/j.jsv.2008.10.029
  16. Lohmann B, Eid R (2009) Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models. In: Roppenecker G, Lohmann B (eds) Methoden und Anwendungen der Regelungstechnik Erlangen-Munchener Workshops 2007 und 2008, Shaker Verlag, Aachen.
  17. Love, M. H., Zink, P. S., Stroud, R. L., Bye, D. R., and Chase, C. (2004). Impact of actuation concepts on morphing aircraft structures. Proceedings of the 45th AIAA Structures, Structural Dynamics and Materials Conference, Palm Springs, CA. pp. 2355-2366.
  18. Lu, K. J. and Kota, S. (2003). Design of compliant mechanisms for morphing structural shapes. Journal of Intelligent Material Systems and Structures, 14, 379-391. https://doi.org/10.1177/1045389X03035563
  19. Maucher, C. (2011). Active Rotor Blade. PhD Thesis, Technische Universitat Munchen.
  20. Maucher, C. K., Grohmann, B. A., Janker, P., Altmikus, A., Jensen, F., and Baier, H. (2007). Actuator design for the active trailing edge of a helicopter rotor blade. Proceedings of the 33rd European Rotorcraft Forum, Kazan, Russia. pp. 923-961.
  21. Monner, H. P., Kintscher, M., Lorkowski, T., and Storm, S. (2009). Design of a smart droop nose as leading edge high lift system for transportation aircrafts. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA.
  22. Nella, J., Atcheson, P., Atkinson, C., Au, D., Blair, M., Bronowicki, A., Fitzgerald, D., Heideng, J., Lightsey, P., Kelly, T., Matthews, G., Pohner, J., Reynolds, P., Shuckstes, D., Texter, S., Waldie, D., and Whitley, R. (2009). Next generation space telescope (NGST) observatory architecture and performance. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA.
  23. Paulus, D., Salmon, T., Mohr, B., Robler, C., Petersson, O., Stroscher, F., Baier, H., and Hornung, M. (2011). Configuration selection for a 450 passenger ultra-efficient 2020 aircraft. Proceedings of the 4th European Conference for Aerospace Sciences, St. Petersburg, Russia.
  24. Petersson, O. and Baier, H. (2011). Multidisciplinary optimization of aircraft structures subject to dynamic aeroelastic loads including load alleviation. Proceedings of the 15th International Forum on Aeroelasticity and Structural Dynamics, Paris, France.
  25. Preumont, A. (2002). Vibration Control of Active Structures: An Introduction. 2nd ed. Dordrecht: Kluwer Academic Publishers.
  26. Reinicke, G., Yoo, E., and Baier, H. (2010). Active vibration damping of large satellite solar array panels. Proceedings of the 21st International Conference on Adaptive Structures Technologies, University Park, PA.
  27. Rittweger, A., Beig, H. G., Konstanzer, P., and Dacal, R. B. (2005). Feasibility demonstration of an active payload adaptor for Ariane 5. European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noordwijk, The Netherlands. pp. 1241-1251.
  28. Roth, D., Enenkl, B., and Dieterich, O. (2007). Active rotor control by flaps for vibration reduction--Full scale demonstrator and first flight test results. Proceedings of the 32nd European Rotorcraft Forum, Maastricht, the Netherlands. pp. 801-814.
  29. Santer, M. and Pellegrino, S. (2009). Topological optimization of compliant adaptive wing structure. AIAA Journal, 47, 523-534. https://doi.org/10.2514/1.36679
  30. Straub, F. K., Kennedy, D. K., Domzalski, D. B., Hassan, A. A., Ngo, H., Anand, V., and Birchette, T. (2004). Smart material-actuated rotor technology-SMART. Journal of Intelligent Material Systems and Structures, 15, 249-260. https://doi.org/10.1177/1045389X04042795
  31. Su, T. J. and Craig, R. R., Jr. (1991). Model reduction and control of flexible structures using Krylov vectors. Journal of Guidance, Control, and Dynamics, 14, 260-267. https://doi.org/10.2514/3.20636
  32. Thill, C., Etches, J., Bond, I., Potter, K., and Weaver, P. (2008). Morphing skins. Aeronautical Journal, 112, 117-139. https://doi.org/10.1017/S0001924000002062
  33. Ursache, N. M., Melin, T., Isikveren, A. T., and Friswell, M. I. (2007). Morphing winglets for aircraft multi-phase improvement. Proceedings of the 7th AIAA Aviation Technology, Integration, and Operations Conference, Belfast, Northern Ireland. pp. 1216-1227.
  34. Washington, G., Yoon, H. S., Angelino, M., and Theunissen, W. H. (2002). Design, modeling, and optimization of mechanically reconfigurable aperture antennas. IEEE Transactions on Antennas and Propagation, 50, 628-637. https://doi.org/10.1109/TAP.2002.1011228
  35. Wildschek, A., Maier, R., Hoffmann, F., Jeanneau, M., and Baier, H. (2006). Active wing load alleviation with an adaptive feed-forward control algorithm. Proceedings of the AIAA Guidance, Navigation, and Control Conference, Keystone, CO. pp. 237-257.
  36. Wildschek, A., Maier, R., Jategaonkar, R., and Baier, H. (2007). Augmentation of active wing bending control with a supplementary adaptive feed-forward control algorithm. Proceedings of the 2nd European Conference for Aerospace Sciences, Brussels, Belgium.
  37. Wildschek, A., Stroscher, F., and Klimmek, T. (2010). Gust load alleviation on a large blended wing body airliner. Proceedings of the 27th International Congress of the Aeronautical Sciences, Nice, France.
  38. Wittmann, J., Hornung, M., and Baier, H. (2010). Mission performance optimization via morphing wing-tip devices. Proceedings of DGLR Kongress, Hamburg, Germany.
  39. Wittmann, J., Steiner, H. J., and Sizmann, A. (2009). Framework for quantitative morphing assessment on aircraft system level. Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, CA.
  40. Yoo, E. J. (2010). Parametric Model Order Reduction for Structural Analysis and Control. PhD Thesis, Technische Universitat Munchen.
  41. Yoo, E. J. and Baier, H. (2009). Parametric model order reduction techniques for simulating active shape and vibration control of the large space structures. Proceedings of the 11th European Spacecraft Structures, Materials and Mechanical Testing Conference, Toulouse, France.
  42. Zakhama, R., Abdalla, M. M., Smaoui, H., and Gurdal, Z. (2009). Multigrid implementation of cellular automata for topology optimization of continuum structures. CMES: Computer Modeling in Engineering and Sciences, 51, 1-24.

Cited by

  1. Morphing Wing Mechanism Using an SMA Wire Actuator vol.13, pp.1, 2012, https://doi.org/10.5139/IJASS.2012.13.1.58
  2. Concurrent design of a morphing aerofoil with variable stiffness bi-stable laminates vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115001
  3. Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates vol.27, pp.14, 2016, https://doi.org/10.1177/1045389X15620038
  4. Morphing aircraft based on smart materials and structures: A state-of-the-art review vol.27, pp.17, 2016, https://doi.org/10.1177/1045389X16629569
  5. Numerical and experimental validation of a full scale servo-actuated morphing aileron model vol.27, pp.10, 2018, https://doi.org/10.1088/1361-665X/aad7d9
  6. A Study on Smart SansEC Skin Sensing for Real-Time Monitoring of Flexible Structures vol.18, pp.7, 2018, https://doi.org/10.1109/JSEN.2018.2801251