DOI QR코드

DOI QR Code

Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Yoo, Beom-Hin (Solar Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Kyung-Kon (Solar Cell Research Center, Korea Institute of Science and Technology) ;
  • Lee, Doh-Kwon (Solar Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hong-Gon (Solar Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Bong-Soo (Solar Cell Research Center, Korea Institute of Science and Technology) ;
  • Park, Nam-Gyu (School of chemical Engineering, Sungkyunkwan University) ;
  • Ko, Min-Jae (Solar Cell Research Center, Korea Institute of Science and Technology)
  • Received : 2011.05.27
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

In this review, we have investigated the effect of $TiO_2$-based blocking layers (t-BLs), deposited on a transparent conductive oxide (TCO)-coated glass substrate, on the photovoltaic performance of dye-sensitized solar cells (DSSCs). The t-BL was deposited using spin-coating or sputtering technique, and its thicknesses were varied to study the influence of the thin $TiO_2$ layer in between transparent conducting glass and nanocrystalline $TiO_2$ (nc-$TiO_2$). The DSSC with the t-BL showed the improved adhesion and the suppressed charge recombination at a TCO glass substrate than those without the t-BL, which led to the higher conversion efficiency.

Keywords

References

  1. B. O. Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Jpn. J. Appl. Phys. Part 2., 45, L638 (2006). https://doi.org/10.1143/JJAP.45.L638
  3. F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 130, 10720 (2008).
  4. N.-G. Park and K. Kim, Phys. Stat. Sol. (a), 205, 1895 (2008). https://doi.org/10.1002/pssa.200778938
  5. N. Kopidakis, J. van de Lagemaat and A. J. Frank, Coord. Chem. Rev., 248, 1165 (2004). https://doi.org/10.1016/j.ccr.2004.03.015
  6. J. van de Lagemaat, N.-G. Park and A. J. Frank, J. Phys. Chem. B, 104, 2044 (2000). https://doi.org/10.1021/jp993172v
  7. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff and E. C. Pereira, J. Phys. Chem. B, 104, 2287 (2000). https://doi.org/10.1021/jp993148h
  8. F. Pichot, S. Ferrere, C. L. Fields and B. A. Gregg, J. Phys. Chem. B, 105, 1422 (2001). https://doi.org/10.1021/jp003000u
  9. K. Zhu, E. A. Schiff, N.-G. Park, J. van de Lagemaat and A. J. Frank, Appl. Phys. Lett., 80, 685 (2002). https://doi.org/10.1063/1.1436533
  10. P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 107, 14394 (2003). https://doi.org/10.1021/jp030790+
  11. P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 109, 930 (2005). https://doi.org/10.1021/jp0405759
  12. P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 109, 7392 (2005). https://doi.org/10.1021/jp0407270
  13. H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim and N.-G. Park, Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  14. N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 107, 11307 (2003).
  15. K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, J. Phys. Chem. B, 107, 7759 (2003). https://doi.org/10.1021/jp022681l
  16. A. J. Frank, N. Kopidakis and J. van de Lagemaat, Coord, Chem. Rev., 248, 1165 (2004). https://doi.org/10.1016/j.ccr.2004.03.015
  17. J. Xia, N. Masaki, K. Jiang and S. Yanagida, J. Phys. Chem. B, 110, 25222 (2006) . https://doi.org/10.1021/jp064327j
  18. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  19. M. Durr, A. Yasuda and G. Nelles, Appl. Phys. Lett., 89 061110-1 (2006).
  20. B. Yoo, K. Kim, D.-K. Lee, M. J. Ko, H. Lee, Y. H. Kim, W. M. Kim and N.-G. Park, J. Mater. chem., 20, 4392 (2010).

Cited by

  1. Improved Photovoltaic Properties Of Dye-Sensitized Solar Cells Using Laser Patterned F-Doped SnO2 Thin Films vol.60, pp.2, 2015, https://doi.org/10.1515/amm-2015-0106
  2. Atomic Layer Deposition of High Performance Ultrathin TiO2Blocking Layers for Dye-Sensitized Solar Cells vol.6, pp.6, 2013, https://doi.org/10.1002/cssc.201300067
  3. Effect of a ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells vol.65, pp.3, 2014, https://doi.org/10.3938/jkps.65.308
  4. Performance enhancement of dye-sensitized solar cell with a TiCl4-treated TiO2 compact layer vol.11, pp.2, 2015, https://doi.org/10.1007/s13391-014-4130-6
  5. Hole-Transporting Materials for Perovskite-Sensitized Solar Cells vol.4, pp.8, 2016, https://doi.org/10.1002/ente.201500534