DOI QR코드

DOI QR Code

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S. ;
  • Al-Azzawi, Nezar A. ;
  • Al-Abady, Faiz M.H.
  • Received : 2010.10.19
  • Accepted : 2011.08.04
  • Published : 2011.10.20

Abstract

Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

Keywords

pKa value;Benzaldoxime;PM3;Ab initio

References

  1. Hdzbecher, Z.; Divis, L.; Kral, M.; Sucha, L.; Vlacil, F. Hand book of organic reagents in inorganic analysis, John Wiley & Sons: 1976; p 691.
  2. Jhaveri, L. C.; Nalk, H. B. J. Indian Chem. Soc. 1978, 2(2), 183.
  3. Vavaprasad, D. M. J. Poly. Sci. Part A. Polymer Chemistry 1986, 24, 3279. https://doi.org/10.1002/pola.1986.080241212
  4. Ebead, Y. H.; Salman, H. M.; Abdellah, M. A. Bull. Korean Chem. Soc. 2010, 31(4), 850. https://doi.org/10.5012/bkcs.2010.31.04.850
  5. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd. ed.; Harper Collins; New York, 1987.
  6. Pine, S. H.; Hendrickson, J. B.; Carm, D. J.; Hammond, G. S. Organic chemistry, 4th ed.; McGraw-Hill: London, 1981; p 196.
  7. Strietwieser, A.; Heathcock, Jr. C. H. Introduction to Organic Chemistry, 2nd ed.; Macmillan Publishing Co.: New York, 1981; p 60.
  8. Kross, K. C.; Seybold, P. G.; Peralta-Inga, Z.; Politzer, P. J. Org. Chem. 2001, 66, 6919. https://doi.org/10.1021/jo010234g
  9. Kross, K. C.; Seybold, P. G. Int. J. Quantum Chem. 2000, 80, 1107. https://doi.org/10.1002/1097-461X(2000)80:4/5<1107::AID-QUA60>3.0.CO;2-T
  10. Gross, K. C.; Seybold, P. G.; Hadad, C. M. Int. J. Quantum Chem. 2002, 90, 445. https://doi.org/10.1002/qua.10108
  11. Gross, K. C.; Seybold, P. G. Int. J. Quantum Chem. 2001, 85, 569. https://doi.org/10.1002/qua.1525
  12. Al-Azzawi, Nezar, A. The role of hydrogen bonding and other parameters on ionization constants of benzaldoximes, Ph. D. Thesis, Mosul, Iraq. 1998.
  13. Schlegel, H. B. ed.; Molar electronic structure, theory, geometry optimization on potential energy surface; World Scientific: Singapore, 1994.
  14. Baker, J. J. Comput. Chem. 1986, 17, 385.
  15. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. https://doi.org/10.1021/ja00364a005
  16. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547. https://doi.org/10.1021/ja01478a001
  17. Parr, R. G.; Szentpaly, L. V.; Lin, S. J. Am. Chem. Soc. 1999, 121, 1922. https://doi.org/10.1021/ja983494x
  18. Shorter, J. Correlation analysis of organic chemistry; Research studies Press: New York, 1982.
  19. Rochester, C. H. Acidity function; Academic Press: London, 1970.
  20. Liler, M. Reaction mechanisms in aulfuric acid and other strong acid media; Academic Press: London, 1970.
  21. Albert, A. Selective toxicity; Methuen, London, 1968.
  22. Bieger, D.; Wassermann, O. J. Pharm. Pharmacol. 1967, 19, 844. https://doi.org/10.1111/j.2042-7158.1967.tb09554.x
  23. Albert, A. Selective toxicity, 6th ed.; Chapman and Hall London, Methuen, New York, 1979.
  24. Park, J. M.; No, K. T.; Jhon, M. S.; Scheraga, H. A. J. Compud. Chem. 1993, 14, 1482.
  25. Ibrahim, A. A.; Abdalrazaq, E. A. Am. J. Appli. Sci. 2009, K6(7), 1385.
  26. Hollingsworth, C. A. Seybold, P. G.; Hadad, C. M. In. J. of Quantum Chem. 2002, 90, 1396. https://doi.org/10.1002/qua.10362
  27. Singh, P. P.; Srivastava, H. K.; Pasha, F. A. Bio. Org. Med. Chem. 2004, 12(1), 171. https://doi.org/10.1016/j.bmc.2003.11.002
  28. Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Int. J. Quantum Chem. 2005, 104(1), 87. https://doi.org/10.1002/qua.20569