DOI QR코드

DOI QR Code

ALMOST SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A PID

  • Received : 2011.02.21
  • Accepted : 2011.06.19
  • Published : 2011.06.30

Abstract

Let D be an integral domain, S be a multiplicative subset of D such that DS is a PID, and D[X] be the polynomial ring over D. We show that S is an almost splitting set in D if and only if every nonzero prime ideal of D disjoint from S contains a primary element. We use this result to give a simple proof of the known result that D is a UMT-domain and Cl(D[X]) is torsion if and only if each upper to zero in D[X] contains a primary element.

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. D.D. Anderson, D.F. Anderson, and M. Zafrullah, The ring D + $XD_S$[X] and t-splitting sets, Commutative Algebra Arab. J. Sci. Eng. Sect. C Theme Issues 26(1) (2001), 3-16.
  2. D.D. Anderson, T. Dumitrescu, and M. Zafrullah, Almost splitting sets and AGCD domains, Comm. Algebra 32 (2004), 147-158. https://doi.org/10.1081/AGB-120027857
  3. D.D. Anderson and L.A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141-154. https://doi.org/10.1016/0022-4049(88)90026-6
  4. D.F. Anderson and G.W. Chang, Almost splitting sets in integral domains, II, J. Pure Appl. Algebra 208 (2007), 351-359. https://doi.org/10.1016/j.jpaa.2006.01.006
  5. A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
  6. G.W. Chang, Almost splitting sets in integral domains, J. Pure Appl. Algebra 197 (2005), 279-292. https://doi.org/10.1016/j.jpaa.2004.08.035
  7. G.W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral do- mains, J. Pure Appl. Algebra 187 (2004), 71-86. https://doi.org/10.1016/j.jpaa.2003.07.001
  8. S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra 15 (1987), 2349-2370. https://doi.org/10.1080/00927878708823540
  9. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  10. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955-1969. https://doi.org/10.1080/00927878908823829
  11. B.G. Kang, Prufer v-multiplication domains and the ring R[X]$N_v$ , J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  12. M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29-62. https://doi.org/10.1007/BF01168346