Characterizations of Flexible Clay-PVA Hybrid Films: Thermo-optical Properties, Morphology, and Gas Permeability

유연한 점토-폴리(비닐 알코올) 하이브리드 필름의 특성 연구: 열적.광학적 성질, 모폴로지, 및 가스 투과성

  • Shin, Ji-Eun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Ham, Mi-Ran (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Gwangju R&D Center, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 신지은 (금오공과대학교 고분자공학과) ;
  • 함미란 (금오공과대학교 고분자공학과) ;
  • 김정철 (한국생산기술연구원) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Received : 2011.01.28
  • Accepted : 2011.04.22
  • Published : 2011.09.25

Abstract

To improve $Na^+$-saponite(SPT) film flexibility, we prepared SPT hybrid clay films with various poly(vinyl alcohol) (PVA) concentrations(0~10 wt%) using the solution intercalation method. In this study, we investigated the thermo-optical properties, morphology, and gas permeability of the SPT hybrid films. We also examined the relationship between the film properties and PVA content using wide angle X-ray diffraction measurements(XRD), field emission scanning electron microscopy(FESEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermomechanical analysis(TMA), ultraviolet-visible(UV-vis) spectroscopy, and oxygen transmission rate($O_2$TR) testing. The properties of the clay hybrid films were strongly affected by PVA filler content. The presence of a small amount of PVA was sufficient to improve the flexibility of SPT hybrid films.

References

  1. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  2. K. E. Strawhecker and E. Manias, Chem. Mater., 2, 2943 (2000).
  3. I. Cendoya, L. Lopez, A. Alegria, and C. Mijangos, J. Polym. Sci. Part B: Polym. Phys., 39, 1968 (2001). https://doi.org/10.1002/polb.1172
  4. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31, 1335 (1996). https://doi.org/10.1007/BF00353114
  5. G. Legaly, Smectitic Clays as Ionic Macromolecules, Elsevier, London, 1986.
  6. P. C. LeBaron, Z. Wang, and J. P. Thomas, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  7. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  8. P. B. Messersmith and E. P. Giannelis, Chem. Mater., 5, 1064 (1993). https://doi.org/10.1021/cm00032a005
  9. K. Yano, A. Usuki, T. Karauchi, and O. Kamigaito, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  10. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polym., Sci., 90, 3208 (2003). https://doi.org/10.1002/app.12996
  11. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999). https://doi.org/10.1016/S0169-1317(99)00019-8
  12. S.-K. Ham, M. H. Jung, and J.-H. Chang, Polymer(Korea), 30, 298, (2006).
  13. R. Y. Huang and J. W. Rhim, Polym. Int., 30, 129 (1993). https://doi.org/10.1002/pi.4990300119
  14. M. Levine, G. Iikka, and P. Weis, J. Polym. Sci. Part B: Polym. Chem., 2, 915 (1964). https://doi.org/10.1002/pol.1964.110020918
  15. W. Chiang and C. Min, J. Appl. Polym. Sci., 30, 4045 (1985). https://doi.org/10.1002/app.1985.070301008
  16. J. Wen, V. J. Vasudevan, and G. L. Wilkes, J. Sol-Gel Sci. Technol., 5, 115 (1995). https://doi.org/10.1007/BF00487727
  17. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74, 133 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  18. W.-Y. Chuang, T.-H. Yong, W.-Y. Chiu, and C.-Y. Lin, Polymer, 41, 5633 (2000). https://doi.org/10.1016/S0032-3861(99)00818-6
  19. I. Sakurada and M. Dekker, Poly(vinyl alcohol) fibers, Marcel Dekker, New York, 1985.
  20. J. Jang and D. K. Lee, Polymer, 45, 1599 (2004). https://doi.org/10.1016/j.polymer.2003.12.046
  21. I. Cendoya, L. Lopez, A. Alegria, and C. J. Mijangos, J. Polym. Sci. Part B: Polym. Phys., 39, 1968 (2001). https://doi.org/10.1002/polb.1172
  22. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74, 133 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  23. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31, 1335 (1996). https://doi.org/10.1007/BF00353114
  24. J.-H. Yeun, G.-S. Bang, B. J. Park, S. K. Ham, and J.-H. Chang, J. Appl. Polym. Sci., 101, 591 (1999).
  25. N. Ogata, S. Kawakage, and T. J Ogihara, J. Appl. Polym. Sci., 55, 119 (1995). https://doi.org/10.1002/app.1995.070550113
  26. G. Legaly, Appl. Clay Sci., 15, 1 (1999). https://doi.org/10.1016/S0169-1317(99)00009-5
  27. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179
  28. K. S. Triantafyllidis, P. C. LeBaron, I. Park, and T. J. Pinnavaia, Chem. Mater., 18, 4393 (2006). https://doi.org/10.1021/cm060825t
  29. J. W. Gilman, C. L. Jackson, A. B. Morgan, and R. Harris Jr., Chem. Mater., 12, 1866 (2000). https://doi.org/10.1021/cm0001760
  30. A. Akelah, P. Kelly, S. Qutubuddin, and A. Moet, Clay Miner., 29, 169 (1994). https://doi.org/10.1180/claymin.1994.029.2.03
  31. D. J. Chaiko, Chem. Mater., 15, 1105 (2003). https://doi.org/10.1021/cm020833j
  32. K. Haraguchi, M. Ebato, and T. Takehisa, Adv. Mater., 18, 2250 (2006). https://doi.org/10.1002/adma.200600143
  33. R. Vendamme, S.-Y. Onoue, A. Nakao, and T. Kunitake, Nature Mater., 5, 494 (2006). https://doi.org/10.1038/nmat1655
  34. T. Ebina and F. Mizukami, Japanese Patent 3,855,003 (2006).
  35. L. E. Neilson, J. Macromol. Sci., A1, 929 (1967).
  36. T. Ebina and F. Mizukami, Adv. Mater., 19, 2450 (2007). https://doi.org/10.1002/adma.200700162
  37. H.-J. Nam, R. Ishii, T. Ebina, and F. Mizukami, Mater. Lett., 63, 57 (2009).
  38. H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo, and F. Mizukami, Surface & Coatings Technology, 202, 2955 (2008). https://doi.org/10.1016/j.surfcoat.2007.10.039
  39. H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo, and F. Mizukami, Jpn. J. Appl. Phys., 47, 1894 (2008). https://doi.org/10.1143/JJAP.47.1894
  40. B. S. Dupont and N. Bilow, US Pat. 4,592,925 (1986).
  41. A. L. Landis and A. B. Naselow, US Pat. 4,645,824 (1987).
  42. K. Higashi and Y. Noda, Eur. Pat. 240249 (1986).
  43. T. Matsuura, S. Ando, S. Sasaki, and F. Yamamoto, Electron Lett., 29, 2107 (1993). https://doi.org/10.1049/el:19931409
  44. H.-J. Nam, R. Ishii, T. Ebina, and F. Mizukami, Mater. Lett., 63, 57 (2009).
  45. J. H. Suh, J. W. Shin, H. K. Kim, H. S. Kim, Y. W. Kim, and H.-J. Kang, Polymer, 34, 564 (2010).
  46. W. Zhang, X. Yanga, C. Li, M. Lianga, C. Lu, and Y. Deng, Carbohydr. Polym., 83, 261 (2011).
  47. J. Lu, T. Wang, and L. T. Drzal, Composites: Part A, 39, 745, (2008).
  48. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002). https://doi.org/10.1016/S0032-3861(01)00790-X
  49. C. Joly, M. Smaihi, L. Porcar, and R. D. Noble, Chem. Mater., 11, 2331 (1999). https://doi.org/10.1021/cm9805018
  50. T. Ebeling, S. Norek, A. Hasan, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 71, 1461 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9<1461::AID-APP11>3.0.CO;2-0
  51. D. H. Weinkauf and D. R. Paul, in Effect of Structural Order on Barrier Properties, W. J. Koros, Editor, American Chemical Society, Washington, DC, 1990.