Antiinflammatory and Antiallergic Activity of Fermented Turmeric by Lactobacillus johnsonii IDCC 9203

Lactobacillus johnsonii IDCC 9203으로 발효한 울금의 소염 및 항알레르기 효과

  • Received : 2011.07.06
  • Accepted : 2011.08.29
  • Published : 2011.09.28

Abstract

Although turmeric has numerous pharmacological effects, the poor water-solubility of curcuminoids, active components of turmeric, restricts their systemic availability in orally administered formulations and limits their therapeutic potential. In this study we attempted turmeric fermentation using several probiotic bacteria to improve its solubility, and also investigated the effects of turmeric and fermented turmeric on anti-inflammatory activity. Fermented turmeric, by L. johnsonii IDCC 9203, more strongly inhibited LPS-induced expression of the pro-inflammatory cytokines than non-fermented turmeric and fermented turmeric by other probiotic strains. We used an NC/Nga mouse model for mite antigen-induced atopic dermatitis to examine the efficacy of the fermented turmeric. Fermented turmeric-fed mice exhibited a significantly reduced serum IgE level and mitigated acute inflammation. When the fermented turmeric was pre-treated by oral administration, it had more preventive activity against acute anaphylactic reaction than the non-fermented group. In addition, we observed that fermentation of turmeric leads to increased water-solubility of curcumin and a change in the active components ratios for bisdemethoxycurcumin, demethoxycrucumin and curcumin. Taken together, these results strongly suggest that fermented turmeric by L. johnsonii IDCC 9203 could be used as a functional food ingredient for improving treatments for atopic dermatitis.

Keywords

Atopic dermatitis;fermented turmeric;immunoglobulin E;Lactobacillus johnsonii IDCC 9203;passive cutaneous anaphylaxis;water-soluble curcumin

References

  1. Almeida, L. P., A. P. F. Cherubino, R. J. Alves, L. Dufosse', and M.B.A. Glo ria. 2005. Separation and determination of the physico-chemical characteristics of curcumin, demeth-oxycurcumin and bisdemethoxycurcumin. Food Res. Int. 38:1039-1044. https://doi.org/10.1016/j.foodres.2005.02.021
  2. Assanasen, P. and R. M. Naclerio. 2002. Antiallergic antiinflammatory effects of H1-antihistamines in human. Clin. Allergy immunol.17: 101-139.
  3. Bae, E. A., H. T. Trinh, Y. C. Lee, S. W. Kim, and D. H. Kim. 2008. Inhibitory effect of fermented red ginseng against passive cutaneous anaphylaxis reaction and scratching behaviors in mice. J. Ginseng Res. 32: 33-38. https://doi.org/10.5142/JGR.2008.32.1.033
  4. Goel, A., A. B. Kunnumakkara, and B. B. Aggarwal. 2008. Curcumin as 'Curecumin': From kitchen to clinic. Biochem. Pharmacol. 75: 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
  5. Hay, C. H. and J.S. de Belleroche. 1998. Dexamethasone prevents the induction of COX-2 mRNA and prostaglandins in the lumbar spinal cord following intraplantar FCA in parallel with inhibition of oedema. Neuropharmacology 37: 739-744. https://doi.org/10.1016/S0028-3908(98)00073-2
  6. Inagaki, N., N. Nakamura, M. Nagao, K. Musoh, H. Kawasaki, and H. Nagai. 1999. Participation of histamine H and H receptors in passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. Eur. J. Pharmacol. 367: 361-371. https://doi.org/10.1016/S0014-2999(98)00974-1
  7. Jayaprakasha, G. K., L. J. Rao, and K. K. Sakariah. 2006. Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98: 720-724. https://doi.org/10.1016/j.foodchem.2005.06.037
  8. Kang, J. K., H. J. Kang, and H. Y Lee. 2009. Effects of fermented turmeric (Curcuma longa) by Bacillus natto supplementation on liver function and serum lipid parameters in mice. J. Korean Soc. Food Sci. Nutr. 38: 430-435. https://doi.org/10.3746/jkfn.2009.38.4.430
  9. Kim, A. N., W. K. Jeon, J. J. Lee, and B. C. Kim. 2010. Upregulation of heme oxygenase-1 expression through CaMKIIERK1/ 2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic. Biol. Med. 49: 323-331. https://doi.org/10.1016/j.freeradbiomed.2010.04.015
  10. Kim, K. S., M. G. Choung, and S. H. Park. 2005. Quantitative determination and stability of curcuminoid pigments from turmeric (Curcuma longa L.) root. Korean J. Crop. Sci. 50: 211-215.
  11. Lee, E. B., S. Y. Y, S. Y. Chung, S. A. Seung, H. M. Rheu, J. S. Yang, and T. M. Yoo. 1998. Studies on the antiinflammatory effects of natural products. J. Appl. Pharmacol. 6: 269- 275.
  12. Lee, S. H., H. S. Kwon, E. H. Yang, B. H. Kang, and T. Y. Kim. 2008. Isolation of Lactobacillus johnsonii IDCC 9203 from infant feces and its probiotic properties. Kor. J. Microbiol. Biotechnol. 36: 121-127.
  13. Leung, D. Y. M. 2000. Atopic dermatitis: New insights and opportunities for therapeutic intervention. J. Allergy Clin. Immunol. 105: 860-76. https://doi.org/10.1067/mai.2000.106484
  14. Mahattanadul, S., T. Nakamura, P. Panichayupakaranant, N. Phdoongsombut, K. Tungsinmunkong, and P. Bouking. 2009. Comparative antiulcer effect of bisdemethoxycurcumin and curcumin in a gastric ulcer model system. Phytomedicine 16: 342-351. https://doi.org/10.1016/j.phymed.2008.12.005
  15. Matsuda, H., S. Tewtrakul, T. Morikawa, A. Nakamura, and M. Yoshikawa. 2004. Anti-allergic principles from Thai zedoary: structural requirements of curcuminoids for inhibition of degranulation and effect on the release of $TNF-{\alpha}$ and IL-4 in RBL-2H3 cells. Bioorg. Med. Chem. 12: 5891-5898. https://doi.org/10.1016/j.bmc.2004.08.027
  16. Novak, N., T. Bieber, and D. Y. M. Leung. 2003. Immune mechanisms leading to atopic dermatitis. J. Allergy Clin. Immunol. 112: 128-39. https://doi.org/10.1016/j.jaci.2003.09.032
  17. Oh, P. S., H. J. Lee, and K. T. Lim. 2009. Inhibitory effect of glycoprotein isolated from cudrania tricuspidata bureau on histamine release and COX-2 activity in RBL-2H3 cells. Korean J. Food Sci. Technol. 41: 405-412.
  18. Portes, E., C. Gardrat, and A. Castellan. 2007. A comparative study on the antioxidant properties of tetrahydrocurcuminoids and curcuminoids. Tetrahedron 63: 9092-9099. https://doi.org/10.1016/j.tet.2007.06.085
  19. Schacke, H., W. D. Docke, and K. Asadullah. 2002. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 96: 23-43. https://doi.org/10.1016/S0163-7258(02)00297-8
  20. Sunada, Y., S. Nakamura, and C. Kamei. 2008. Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mouse. Int. Immunopharmacol. 8: 1761-1766. https://doi.org/10.1016/j.intimp.2008.08.011
  21. Sung, Y. Y., T. S. Yoon, J. Y. Jang, S. J. Park, G. H. Jeong, and H. K. Kim. 2011. Inhibitory effects of Cinnamomum cassia extract on atopic dermatitis-like skin lesions induced by mite antigen in NC/Nga mice. J. Ethnopharmacol. 133: 621-628. https://doi.org/10.1016/j.jep.2010.10.043
  22. Sur, B. J., B. B. Lee, M. J. Yeom, J. J. Han, H. D. Choi, y. J. Lee, S. J. Kim, S. H. Yoon, and D. H. Hahm. 2010. Inhibitory effect of phosphatidylserine on atopy-like dermatitis in NC/Nga mice. Food Sci. Biotechnol. 19: 1513-1518. https://doi.org/10.1007/s10068-010-0215-7
  23. Yodkeeree, S., W. Chaiwangyen, S. Garbisa, and P. Limtrakul. 2009. Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J. Nutr. Biochem. 20: 87-95. https://doi.org/10.1016/j.jnutbio.2007.12.003