On McCoy modules

  • Cui, Jian ;
  • Chen, Jianlong
  • Received : 2009.04.13
  • Published : 2011.01.31


Extending the notion of McCoy rings, we introduce the class of McCoy modules. Over a given ring R, it contains the class of Armendariz modules (over R). Some properties of this class of modules are established, and equivalent conditions for McCoy modules are given. Moreover, we study the relationship between a module and its polynomial module. Several known results relating to McCoy rings can be obtained as corollaries of our results.


McCoy module;McCoy ring;polynomial module;zip module


  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272.
  2. F. R. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition. Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992.
  3. A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
  4. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615.
  5. F. Cedo, Zip rings and Mal'cev domains, Comm. Algebra 19 (1991), 1983-1991.
  6. C. Faith, Algebra I, Rings, Modules and Categories, 205-207, Springer-Verlag, New York, 1981.
  7. C. Faith, Rings with zero intersection property on annihilators: Zip rings, Publ. Mat. 33 (1989), no. 3, 329-332.
  8. C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra 19 (1991), no. 7, 1867-1892.
  9. A. Forsythe, Divisors of zero in polynomial rings, Amer. Math. Monthly 50 (1943), 7-8.
  10. C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, Extensions of zip rings, J. Pure Appl. Algebra 195 (2005), no. 3, 231-242.
  11. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488.
  12. T. K. Lee and Y. Q. Zhou, Reduced modules, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
  13. Z. Lei, J. L. Chen, and Z. L. Ying, A question on McCoy rings, Bull. Austral. Math. Soc. 76 (2007), no. 1, 137-141.
  14. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, New York, 1987.
  15. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295.
  16. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141.
  17. M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
  18. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
  19. W. R. Scott, Divisors of zero in polynomial rings, Amer. Math. Monthly 61 (1954), 336.
  20. Z. L. Ying, J. L. Chen, and Z. Lei, Extensions of McCoy rings, Northeast Math. J. 24 (2008), no. 1, 85-94.
  21. J. M. Zelmanowitz, The finite intersection property on annihilator right ideals, Proc. Amer. Math. Soc. 57 (1976), no. 2, 213-216.
  22. C. P. Zhang and J. L. Chen, Zip modules, Northeast Math. J. 24 (2008), no. 3, 240-256.

Cited by

  1. McCoy modules and related modules over commutative rings vol.45, pp.6, 2017,
  2. Extensions of linearly McCoy rings vol.50, pp.5, 2013,
  3. Power-Serieswise McCoy Modules vol.2018, pp.1563-5147, 2018,


Supported by : National Natural Science Foundation of China