DOI QR코드

DOI QR Code

GLOBAL STABILITY OF A TUBERCULOSIS MODEL WITH n LATENT CLASSES

  • Moualeu, Dany Pascal (Department of Mathematics, University of Yaounde I) ;
  • Bowong, Samuel (Department of Mathematics and Computer Science, University of Douala) ;
  • Emvudu, Yves (Department of Mathematics, University of Yaounde I)
  • Received : 2010.12.20
  • Accepted : 2011.04.02
  • Published : 2011.09.30

Abstract

We consider the global stability of a general tuberculosis model with two differential infectivity, n classes of latent individuals and mass action incidence. This system exhibits the traditional threshold behavior. There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction ratio $\mathcal{R}_0$, this state can be either endemic ($\mathcal{R}_0$ > 1), or infection-free ($\mathcal{R}_0{\leq}1$). The global stability of this model is derived through the use of Lyapunov stability theory and LaSalle's invariant set theorem. Both the analytical results and numerical simulations suggest that patients should be strongly encouraged to complete their treatment and sputum examination.

References

  1. World Health Organization, Global tuberculosis control: surveillance, planning, financing, Geneva, Switzerland: World Health Organization, 2009.
  2. B. M. Murphy, B. H. Singer and D. Kirschner, Comparing epidemic tuberculosis in demo- graphically distinct populations, Math. Biosci. 180 (2002), 161-185. https://doi.org/10.1016/S0025-5564(02)00133-5
  3. S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez and A. R. Ross, The intrinsic transmission dynamics of tuberculosis epidemics, Nat. Med. 1 (1995), 815-821. https://doi.org/10.1038/nm0895-815
  4. C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their aplications, Math. Bios. Eng. 1 (2004), 361-404.
  5. S. Bowong and J. J. Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, Com. Nonl. Sci. Num. Sim. 14 (2009), 4010-4021. https://doi.org/10.1016/j.cnsns.2009.02.017
  6. T. Cohen, C. Colijn, B. Finklea and M. Murray, Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission, J. R. Soc. Interface 4 (2007), 523-531. https://doi.org/10.1098/rsif.2006.0193
  7. J. Snider, M. Rabiglione and A. Kochi, Global burden of tuberculosis, In B. R. Bloom Ed.: Tuberculosis, Pathogenis, Protection and Control, ASM Press, Washington, DC, pp. 47-59, 1994.
  8. A. S. Benenson (Ed.), Control of Communicable Diseases Manual, 16th ed., American Public Health Association, 1995.
  9. N. E. Dunlap, D. E. Briles, Immunology of tuberculosis, Med. Clin. North Amer. 77 (1993) 1235-1251.
  10. National Comittee of Fight Againts Tuberculosis, Guide du personnel de la sante, in The Ministry of Public Health report, Ministere de la Sante Publique (ed), Yaounde-Cameroon: CEPER Press, 1-110, 2001.
  11. A. Korobeinikov, Lyapunov functions and global properties for SIER and SEIS epidemic models, Math. Med. Biol. 21 (2001), 75-83.
  12. C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Ana. App. 338 (2008), 518-555. https://doi.org/10.1016/j.jmaa.2007.05.012
  13. C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progres- sion, Math. Bios. Eng. 3 (2006), 603-614.
  14. N. Bame, S. Bowong, J. Mbang, G. Sallet and J. J. Tewa, Global stability for SEIS models with n latent classes, Math. Biosci. Eng. 5 (2008), 20-33.
  15. A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle, SIAM J. App. Math. 1 (2007), 260-278.
  16. A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, 1994.
  17. J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems, SIAM Rev. 35 (1993), 43-79. https://doi.org/10.1137/1035003
  18. D. G. Luenberger, Introduction to dynamical systems: theory, models, and applications, John Wiley & Sons Ltd., 1979.
  19. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios. 180 (2002), 29-28. https://doi.org/10.1016/S0025-5564(02)00108-6
  20. J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Math- ematics, Philadelphia, Pa., 1976.
  21. J.P. LaSalle, Stability theory for ordinary differential equations, J. Differ. Equ. 41 (1968), 57-65.
  22. N. P. Bhati and G. P. Szego, Stability Theory of Dynamical Systems, Springer-Verlag, 1970.
  23. National Institute of Statistics, Evolution des systemes statistiques nationaux, experience du Cameroun, in The National Institute of Statistics report, J. Tedou (ed). New-york, 1-18, 2007.
  24. K. Styblo, Surveillance of Tuberculosis, Int. J. Epidemiology 5 (1976), 63-68. https://doi.org/10.1093/ije/5.1.63