Journal of applied mathematics & informatics
- Volume 29 Issue 5_6
- /
- Pages.1097-1115
- /
- 2011
- /
- 2734-1194(pISSN)
- /
- 2234-8417(eISSN)
DOI QR Code
GLOBAL STABILITY OF A TUBERCULOSIS MODEL WITH n LATENT CLASSES
- Moualeu, Dany Pascal (Department of Mathematics, University of Yaounde I) ;
- Bowong, Samuel (Department of Mathematics and Computer Science, University of Douala) ;
- Emvudu, Yves (Department of Mathematics, University of Yaounde I)
- Received : 2010.12.20
- Accepted : 2011.04.02
- Published : 2011.09.30
Abstract
We consider the global stability of a general tuberculosis model with two differential infectivity, n classes of latent individuals and mass action incidence. This system exhibits the traditional threshold behavior. There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction ratio
File
References
- World Health Organization, Global tuberculosis control: surveillance, planning, financing, Geneva, Switzerland: World Health Organization, 2009.
- B. M. Murphy, B. H. Singer and D. Kirschner, Comparing epidemic tuberculosis in demo- graphically distinct populations, Math. Biosci. 180 (2002), 161-185. https://doi.org/10.1016/S0025-5564(02)00133-5
- S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopwell, M. A. Sanchez and A. R. Ross, The intrinsic transmission dynamics of tuberculosis epidemics, Nat. Med. 1 (1995), 815-821. https://doi.org/10.1038/nm0895-815
- C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their aplications, Math. Bios. Eng. 1 (2004), 361-404.
- S. Bowong and J. J. Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, Com. Nonl. Sci. Num. Sim. 14 (2009), 4010-4021. https://doi.org/10.1016/j.cnsns.2009.02.017
- T. Cohen, C. Colijn, B. Finklea and M. Murray, Exogenous re-infection and the dynamics of tuberculosis epidemics: local effects in a network model of transmission, J. R. Soc. Interface 4 (2007), 523-531. https://doi.org/10.1098/rsif.2006.0193
- J. Snider, M. Rabiglione and A. Kochi, Global burden of tuberculosis, In B. R. Bloom Ed.: Tuberculosis, Pathogenis, Protection and Control, ASM Press, Washington, DC, pp. 47-59, 1994.
- A. S. Benenson (Ed.), Control of Communicable Diseases Manual, 16th ed., American Public Health Association, 1995.
- N. E. Dunlap, D. E. Briles, Immunology of tuberculosis, Med. Clin. North Amer. 77 (1993) 1235-1251.
- National Comittee of Fight Againts Tuberculosis, Guide du personnel de la sante, in The Ministry of Public Health report, Ministere de la Sante Publique (ed), Yaounde-Cameroon: CEPER Press, 1-110, 2001.
- A. Korobeinikov, Lyapunov functions and global properties for SIER and SEIS epidemic models, Math. Med. Biol. 21 (2001), 75-83.
- C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, J. Math. Ana. App. 338 (2008), 518-555. https://doi.org/10.1016/j.jmaa.2007.05.012
- C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progres- sion, Math. Bios. Eng. 3 (2006), 603-614.
- N. Bame, S. Bowong, J. Mbang, G. Sallet and J. J. Tewa, Global stability for SEIS models with n latent classes, Math. Biosci. Eng. 5 (2008), 20-33.
- A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle, SIAM J. App. Math. 1 (2007), 260-278.
- A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM, 1994.
- J. A. Jacquez and C. P. Simon, Qualitative theory of compartmental systems, SIAM Rev. 35 (1993), 43-79. https://doi.org/10.1137/1035003
- D. G. Luenberger, Introduction to dynamical systems: theory, models, and applications, John Wiley & Sons Ltd., 1979.
- P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Bios. 180 (2002), 29-28. https://doi.org/10.1016/S0025-5564(02)00108-6
- J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Math- ematics, Philadelphia, Pa., 1976.
- J.P. LaSalle, Stability theory for ordinary differential equations, J. Differ. Equ. 41 (1968), 57-65.
- N. P. Bhati and G. P. Szego, Stability Theory of Dynamical Systems, Springer-Verlag, 1970.
- National Institute of Statistics, Evolution des systemes statistiques nationaux, experience du Cameroun, in The National Institute of Statistics report, J. Tedou (ed). New-york, 1-18, 2007.
- K. Styblo, Surveillance of Tuberculosis, Int. J. Epidemiology 5 (1976), 63-68. https://doi.org/10.1093/ije/5.1.63