A Numerical Simulation of Aerodynamic Focusing of Nanoparticles in a Wide Range of 30nm~3000nm

30nm~3000nm 광범위 직경 입자의 공기역학적 집속에 대한 수치해석

  • Lee, Kwang-Sung (School of Mechanical Engineering, Pusan Nat'l University) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan Nat'l University)
  • 이광승 (부산대학교 기계공학부) ;
  • 이동근 (부산대학교 기계공학부)
  • Received : 2011.10.04
  • Accepted : 2011.11.29
  • Published : 2011.12.31

Abstract

Previous designs of conventional aerodynamic lenses have a limitation of narrow range of focusable particle size, e.g. 30 to 300nm or 3 to 30nm. To enlarge the focusable size range to 30-3000nm, it is necessary to avoid a significant loss of particles larger than 300nm inside the lenses. From numerical simulations on size-resolved particle trajectories, we confirmed that the traveling losses of such large particles could be avoided only when the radial position of particles approaching the orifice lens was near the lens axis. Hence, we designed the lens system consisting of a converging-diverging nozzle and 7 orifices to fulfill the requirement. In particular, the orifices were aligned in a way that their diameters were descending and ascending to the downstream. As a result, 30-2800nm particles can be focused to the particle beam of 0.2mm or less in radius with above 85% transmission efficiency. Even $10{\mu}m$ particles can be focused with 74% of transmission efficiency.

Acknowledgement

Supported by : 부산대학교

References

  1. Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995a, "Generation Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions," Aerosol Sci. Technol., Vol. 22, pp. 293-313. https://doi.org/10.1080/02786829408959748
  2. Liu, P., Ziemann, P. J., Kittelson, D. B. and McMurry, P. H., 1995b, "Generation Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions," Aerosol Sci. Technol., Vol. 22, pp. 314-324. https://doi.org/10.1080/02786829408959749
  3. Lee, D., Park, K. and Zachariah, M. R., 2005, "Determination of size distribution of polydisperse nanoparticles with Single Particle Mass Spectrometry: The role of Ion Kinetic Energy," Aerosol Sci. Technol., Vol. 39, pp. 162-169. https://doi.org/10.1080/027868290904537
  4. Lee, D., Miller, A., Kittelson, D. and Zachariah, M. R., 2006, "Characterization of metal-bearing diesel nanoparticles using single particle mass spectrometry," J. Aerosol Sci., Vol. 37(1), pp. 88-110. https://doi.org/10.1016/j.jaerosci.2005.04.006
  5. Lee, K.‐S., Cho, S.‐W. and Lee, D., 2008, "Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single mass spectrometry," J. Aerosol Sci., Vol. 39, pp. 287-304. https://doi.org/10.1016/j.jaerosci.2007.10.011
  6. Dong. Y., Bapat, A., Hilchie, S., Kortshagen, U. and Campbell, S. A., 2004, "Generation of Nano-Sized Free Standing Single Crystal Silicon Particles," J. Vacuum Sci. & Technol. B: Microelectronics and Nanometer Structures, 22(4), pp. 1923-1930. https://doi.org/10.1116/1.1771667
  7. Fonzo, F. D., Gidwani, A., Fan, M. H., Neumann, D., Iordanoglou, D. I. Heberlein, J. V. R., Mc-Murry, P. H., Girshick, S. L., Tymiak, N., Gerberich, W. W. and , Rao, N. P., 2000, "Focused Nanoparticle‐Beam Deposition of Patterned Microstructures," Appl. Phys. Lett., 77(6), pp. 910-912. https://doi.org/10.1063/1.1306638
  8. Qi, L., MuMurry, P. H., Norris, D. J. and Girshick, S. L., 2010, "Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing," Aerosol Sci. Technol., Vol. 44, pp. 55-60. https://doi.org/10.1080/02786820903376876
  9. Harris, W. A., Reilly, P. T. A. and Whitten, W. B., 2006, "Aerosol MALDI of peptides and proteins in an ion trap mass spectrometer: Trapping, resolution and signal-to-noise," Int. J. Mass Spectrom.,258, pp. 113-119. https://doi.org/10.1016/j.ijms.2006.06.014
  10. Murphy, W. K. and Sears, G. W., 1964, "Production of Particulate Beams," J. Appl. Phys., Vol. 35, pp. 1986-1987. https://doi.org/10.1063/1.1713788
  11. Das, R. and Phares, D. J., 2004, "Expansion of an ultrafine aerosol through a thin-plate orifice," J. Aerosol Sci., Vol. 35, pp. 1091-1103. https://doi.org/10.1016/j.jaerosci.2004.03.006
  12. Deng, R., Zhang, X., Smith, K. A., Wormhoudt, J., Lewis, D. K. and Freedman, A., 2008, "Focusing Particle with Diameters of 1 to 10 Microns into Beams at Atmospheric Pressure," Aerosol Sci. Technol., Vol. 42, pp. 899-915. https://doi.org/10.1080/02786820802360674
  13. Chen, D. R. and Pui, Y. H., 1995, "Numerical and Experimental Studies of Particle Deposition in a Tube with a Conical Contraction-Laminar Flow Regime," J. Aerosol Sci., Vol. 26(4), pp. 563-574. https://doi.org/10.1016/0021-8502(94)00127-K
  14. Wang, X. and McMurry, P. H., 2006a, "An Experimental Study of Nanoparticle Focusing with Aerodynamic Lenses," Int. J. Mass Spectrom., Vol. 258, pp. 30-36. https://doi.org/10.1016/j.ijms.2006.06.008
  15. Wang, X. and McMurry, P. H., 2006b, "A Design Tool for Aerodynamic Lens Systems," Aerosol Sci. Technol., Vol. 40, pp. 320-334. https://doi.org/10.1080/02786820600615063
  16. Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb, C. E., Morris, J. and Davidovits, P., 2004, "Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens-Nozzle System," Aerosol Sci. Technol., Vol. 38, pp. 619-638. https://doi.org/10.1080/02786820490479833
  17. Wang, X., Gidwani, A., Girshick, S. L. and McMury, P. H., 2005, "Aerodynamic Focusing of Nanoparticles: II. Numerical Simulation of Particle Motion Through Aerodynamic Lenses," Aerosol Sci. Technol., Vol. 39, pp. 624-636. https://doi.org/10.1080/02786820500181950
  18. Lee, K.-S., Kim, S. and Lee, D., 2009, "Aerodynamic focusing of 5‐50nm nanoparticles in air," J. Aerosol Sci., Vol. 40, pp. 1010-1018. https://doi.org/10.1016/j.jaerosci.2009.09.004
  19. TSI, 2004, Product information of Series 3800 Aerosol Time-of-Flight Mass Spectrometers with Aerodynamic Focusing Lens Technology, www.tsi.com.
  20. Hari, S., McFarland, A. R. and Hassan, Y. A., 2007, "CFD Study on the Effects of the Large Particle Crossing Trajectory Phenomenon on Virtual Impactor Performance," Aerosol Sci. Technol., Vol. 41, pp. 1040-1048. https://doi.org/10.1080/02786820701697549
  21. Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R. and Deshler, T., 2007, "Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurement for the Aerodyne Aerosol Mass Spectrometer," Aerosol Sci. Technol., Vol. 41, pp. 721-733. https://doi.org/10.1080/02786820701422278
  22. Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E. and Worsnop, D. R., 2000, "Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles," Aerosol Sci. Technol., Vol. 33, pp. 49-70. https://doi.org/10.1080/027868200410840