DOI QR코드

DOI QR Code

An Analysis on the Pedagogical Content Knowledge of Natural number Concepts for Korean Elementary School Teachers

초등 교사의 자연수 개념에 대한 교수학적 내용지식 분석

  • Received : 2011.10.16
  • Accepted : 2011.11.25
  • Published : 2011.11.30

Abstract

The purpose of this research is to analyze the pedagogical content knowledge on the natural number concepts of Korean Elementary School Teachers. Shulman(1986b) had developed a tool in order to understand teachers' knowledge, as he defined three types of knowledge in teaching ; Subject Matter Knowledge, Curricular Knowledge, and Pedagogical Content Knowledge. Pang(2002) defined two types of elements including in the ways of teaching ; individual element, and sociocultural element. Two research questions are addressed; (1) What is the pedagogical content knowledge of Natural number Concepts for Korean Elementary School Teachers? ; (2) What factors are included in the pedagogical content knowledge of Natural number Concepts for Korean Elementary School Teachers? Findings reveal that (1) the Korean Elementary School Teachers had three types of the pedagogical content knowledge on the natural number concepts; (2) Teacher Factors were more included than Social-Cultural Factors in the pedagogical content knowledge on the natural number concepts of the Korean Elementary School Teachers. Further suggestions were made for future researches to include (1) a comparative study on teachers between ordinary teachers and those who majored mathematics education in the graduate school. (2) an analysis on the classroom activities about the natural number concepts.

References

  1. 강완 (2008). 수학교육학의 전개. 서울: 경문사.
  2. 강창동 (2003). 지식기반 사회와 학교지식. 서울: 문음사.
  3. 강흥규 (2005). Dewey의 경험주의 수학교육론 연구. 서울: 경문사.
  4. 강흥규․고정화 (2003). 양의 측정을 통한 자연수와 분수 지도의 교수학적 의의. 대한수학교육학회지 <학교수학>. 5(3), 385-399.
  5. 고정화 (2005). 학력 초의 활동주의적 수개념 구성에 관한 연구. 서울대학교 대학원 박사학위 논문.
  6. 교육과학기술부 (2009a). 1-1 수학. 서울: (주)두산.
  7. 교육과학기술부 (2009b). 1-1 수학. 서울: (주)두산.
  8. 교육과학기술부 (2009c). 1-2 수학. 서울: (주)두산.
  9. 교육과학기술부 (2009d). 1-2 수학익힘책. 서울: (주)두산.
  10. 교육과학기술부 (2009e). 2-1 수학. 서울: (주)두산.
  11. 교육과학기술부 (2009f). 2-2 수학. 서울: (주)두산.
  12. 교육과학기술부 (2009g). 슬기로운 생활 1-1. 서울: 두산동아(주)
  13. 교육과학기술부 (2009h). 초등학교 교사용 지도서 수학 1-1. 서울: (주)두산.
  14. 교육과학기술부 (2009i). 초등학교 교사용 지도서 수학 1-2. 서울: (주)두산.
  15. 교육과학기술부 (2009j). 초등학교 교사용 지도서 수학 2-1. 서울: (주)두산.
  16. 교육과학기술부 (2009k). 초등학교 교사용 지도서 수학 2-2. 서울: (주)두산.
  17. 교육과학기술부 (2009l). 초등학교 교육과정 해설(IV): 수학, 과학, 실과. 서울 : 미래엔 컬쳐그룹.
  18. 교육과학기술부 (2010a). 3-1 수학. 서울: (주)두산.
  19. 교육과학기술부 (2010b). 4-1 수학. 서울: (주)두산.
  20. 교육과학기술부 (2010c). 초등학교 교사용 지도서 수학 3-1. 서울: (주)두산.
  21. 교육과학기술부 (2010d). 초등학교 교사용 지도서 수학 4-1. 서울: (주)두산.
  22. 김남희․나귀수․박경미․이경화․정영옥․홍진곤 (2006). 수학교육과정과 교재연구. 서울: 경문사.
  23. 김만희 (2003). 폴라니의 인식론에 근거한 과학교수의 내러티브적 성격 고찰. 한국교원대학교 대학원 박사학위논문.
  24. 김용대 (2001). 교사의 수학적 관념과 지식에 대한 조사 연구. 한국교원대학교 대학원 박사학위논문.
  25. 김응태․박승안 (1994). 정수론. 서울: 경문사
  26. 민윤 (2003). 사회과 역사 수업에서 초등 교사의 교수내용지식에 대한 이해. 한국교원대학교 대학원 박사학위논문.
  27. 박경민 (2001). 교수적 내용 지식에 대한 중등 과학 예비교사의 인식 조사. 서울대학교 대학원 석사학위논문.
  28. 박교식 (1997). 우리 나라 학교 수학의 세 가지 서로 다른 판(Version)에 관한 연구. 대한수학교육학회 논문집. 7(2), 91-101.
  29. 방정숙 (2001). 사례 연구를 통한 초등학교 교사의 수학 교수법 개발에 관한 소고. 한국수학교육학회지 시리즈 C <초등수학교육>. 5(2), 143-161.
  30. 방정숙 (2002). 수학교사의 교수방법에 영향을 미치는 요소에 관한 소고. 한국수학교육학회지 시리즈 A <수학교육>, 41(3), 257-271.
  31. 방정숙․김상화․박금란 (2007). 초등교사의 수학과 교수법적내용지식 정립을 위한 교수학습 자료 개발. 한국교원대학교 부설 교과교육공동연구소.
  32. 서관석․전경순 (2000). 예비초등교사들의 분수 연산에 관한 내용적 지식과 교수학적 지식 수준에 대한 연구: 교사교육적 관점. 수학교육학연구, 10(1), 103-113.
  33. 우정호 (2001). 학교수학의 교육적 기초. 서울: 서울대학교출판부.
  34. 이명희․황우형. (2010). 초등학교 교육과정에 제시된 자연수 개념의 지도 내용 분석. 한국수학교육학회지 시리즈 A <수학교육>. 49(4), 437-462.
  35. 임정대 (1996). 수학기초론의 이해. 서울: 청문각.
  36. 정영옥 (1997). Freudenthal의 수학화 학습-지도론 연구. 서울대학교 대학원 박사학위 논문.
  37. 정영옥 (2005). 네덜란드의 초등 수학 교육과정에 대한 개관 : 자연수와 연산 영역을 중심으로. 대한수학교육학회지 <학교수학>. 7(4), 403-425.
  38. 조성민 (2006). 교육과정 실행의 관점에서 본 수학교사 지식과 수업의 관련성 연구 : 고등학교 함수내용을 중심으로. 이화여자대학교 대학원 박사학위논문.
  39. 조용환 (1999). 질적연구 : 방법과 사례. 서울: 교육과학사.
  40. Ball, D. L. (1988a). Knowledge and reasoning in mathematical pedagogy: Examining what prospective teachers bring to teacher education. Unpublished doctoral dissertation, Michigan State University, East Lansing.
  41. Ball, D. L. (1988b). Research on teacher learning: Studying how teachers' knowledge changes. Action in Teacher Education. 10(2), 17-24. https://doi.org/10.1080/01626620.1988.10519385
  42. Ball, D. L. (1991). Research on teaching mathematics: Making subject matter knowledge part of equation. In J. Brophy (Ed.), Advances in research on teaching, Vol. 2(pp.1-48). Greenwich, CT: JAI Press.
  43. Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathemcatis: The unsolved problem of teachers' mathematical knowledge. In Virginia Richardson (Ed.), Handbook of research on teaching (pp.433-456). Washington, D. C. : American Educational Research Association.
  44. Beishuizen, M. (1999). The empty number line as a new model. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 157-168). Buckingham: Unversity Press.
  45. Benoit, R. (2006). 수란 무엇인가? : 원리와 개념으로 살펴보는 신비한 수의 세계. 정은비(역). 서울: 민음in.
  46. Brainerd, C. J. (1979). The Origin of Number Concept. 유승구(역) (1991). 수개념의 기원. 서울: 성원사.
  47. Brousseau, G. (2002). Theory of Didactical Situations in Mathematics. Kluwer Academic Publishers.
  48. Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teachers' pedagogical content knowledge of students' problem solving in elementary arithmetic. Journal for Research in Mathematics Education. 19, 385-401. https://doi.org/10.2307/749173
  49. Chevallard, Y. (1999). Didactique? Is it a plaisanterie? You must be joking! A critical comment on terminology. Instructional Science. 27(1-2), 1999.03. 5-7. https://doi.org/10.1007/BF00890681
  50. Clarke, D. M. (1997). The changing role of mathematics teacher, Journal for Research in Mathematics Educaion. 28(3), 278-308. https://doi.org/10.2307/749782
  51. Clason, R. G. (1968). Number concepts in arithmetic texts of the United States from 1880 to 1966, with related Psychological and mathematical developments. Unpublished doctoral dissertation. The University of Michigan.
  52. Cochran, K. F., DeRuiter, J. A., & King, R, A. (1993). Pedagogical Content Knowing: An Integrative Model for Teacher Preparation. Journal of Teacher Education, 44(4), 263-272. https://doi.org/10.1177/0022487193044004004
  53. Cochran, K. F., King, R. A., & DeRuiter, J. A. (1991). Pedagogical content knowledge: A tentative model for teacher preparation. Paper presented at the annual meeting of the American Educational Research Association. Chicago, April, 1991.
  54. Comenius, J. A. (1953). The Analytical Didactic. 이숙종(역). 분석교수학. 서울: 대한교과서주식회사.
  55. Confrey, J. (1980). Conceptual Change, Number Concepts and the Introduction to Calculus. Unpublished Doctoral Dissertation. The University of Chicago.
  56. Davydov, V. V. (1990). The Empirical Character of Generalization as One of the Sources of Difficulties in Mastering Instructional Material. in J. Kilpatrick (ed.). Types of Generalization in Instruction: Logical and Psychological Problems in the Structuring of School Curricula. Reston, VA : National Council of Teachers of Mathematics. pp. 102-159.
  57. Delaney, K. D. (1997), Understanding Social Studies for Teaching: A Sociocultural Approach to Teacher-Interns' Learning Pedagogical Social Studies Knowledge, Unpublished Doctoral Dissertation, University of North Carolina.
  58. Dewey, J., & McLellan, J. A. (1895). The psychology of number and its applications to methods of teaching arithmetic. New York: D. Appleton company.
  59. Dewey, J. (1972). Psychology of Number. John Dewey: The Early Works, 1882-1898. Vol. 5: 1895-1898. Early Essays. Carbondale and Edwardsville : Southern Illinois University Press. 424-429.
  60. Ernest, P. (1991). The Philosophy of Mathematics Education. The Falmer Press.
  61. Even, R. (1990). Subject matter knowledge for teaching and the case of functions. Educational studies in mathematics, 21, 521-544. https://doi.org/10.1007/BF00315943
  62. Fischbein, E. (1993). The interaction between the formal, the algorithmic and the intuitive components in a mathematical activity, In R. Biehler, R. W. Scholz, R. Straiser, & B. Winkelman (Eds.), Didactics of mathematics as a scientific discipline(p. 231-245). Dordrecht, Netherlands: Kluwer.
  63. Freudenthal, H. (1973). Mathematics as an Educational task. Dordrecht: G. Reidel Publishing Company.
  64. Freudenthal, H. (1983). Didactical Phenomenology of Mathematical Structure. Dordrecht: Reidel Publishing Company.
  65. Freudenthal, H. (1991). Revisiting mathematics education. Kluwer Academic Publisher.
  66. Geertz, C. (1973). Thick description: Toward an interpretive theory of culture. In C. Ceertz. The interpretation of cultures. 3-30. New York: Basic Books.
  67. Gravemeijer, K. P. E. (1994). Developing Realistic Mathematics Education. UtrechtL CD $\beta$ Press.
  68. Hammerman, E. (2006). Becoming a better science teacher: 8 steps to high quality instruction and student achievement. Thousnad Oaks, CA: Crowin Press.
  69. Heath, L. T. (1956). The Thirteen Books of Euclid's Elements, translatedfrom the texts of Heiberg with introduction and commentary, Vol. 2. New York: Dover Publications, Inc.
  70. Hermann, W. (1949). Philosophy of mathematics and natural science. 김상문(역).(1987). 수리철학과 과학철학. 서울: 민음사.
  71. Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert(Ed.), Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 1-27.
  72. Holland, J., & Ramazanoglu, C. (1994) "Coming to conclusions: Power and interpretation in researching young women's sexuality", in Purvis, J. and Maynard, M. (eds) Researching Women's lives from a Feminist perspective, London: Falmer.
  73. Kang, W. (1990). Didactic Transposition of Mathematical knowledge in Textbook, Doctral Dissertation, Athens: University of Georgia.
  74. Kaplan, R. G. (1991, October). Teacher Beliefs and practices: A square peg in a square hole, Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Blacksburg, VA.
  75. Kennedy, M. M. (1990). A survey of recent literature on teachers' subject matter knowledge (Issue Series 90-3). East Lansing: Michigan State University, National Center for Research on Teacher Education.
  76. Kennedy, L. M., & Tipps. S. (2000). Guiding children's learning of mathematics. Belmont, CT: Wadsworth/Thomson Learning
  77. Klein, M. (1980). Mathematics: The Loss of Certainty. 박세희(역)(1994). 수학의 확실성. 서울 : 민음사.
  78. Klein, T. (1998). Flexibilization of mental arithmetic strategies on a different knowledge base: The empty line in a realistic versus gradual program. design. Utrecht: Freudenthal Institute.
  79. Krishner, D. (2002). Untangling teachers' diverse aspirations for student learning: A crossdisciplinary strategy for relating psychological theory to pedagogical practice, Journal for Research in Mathematics Education. 33(1), 46-58. https://doi.org/10.2307/749869
  80. Lappan, G. (1997). The challenges of implementation: Supporting teachers. American Journal of Education. 106, 207-239. https://doi.org/10.1086/444181
  81. Leinhardt, G., & Smith, D. A. (1985). Expertise in Mathematics Instruction: Subject Matter Knowledge. Educational Psychologist. 77.
  82. LeTendre, G. K. (1999). The problem of Japan: Qualitative studies and international educational comparisons. Educational Researcher. 28(2), 38-45. https://doi.org/10.3102/0013189X028002038
  83. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understading of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.
  84. Marks, R. (1990). Pedagogical Content Knowledge : From a mathematical case to a modified conception. Journal of teacher Education, 41(3), 3-11. https://doi.org/10.1177/002248719004100302
  85. Marks, R. (1991). When Should Teachers Learn Pedagogical Content Knowledge? American Educational Research Association. Chicago, IL. 1-15.
  86. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. NY: Macmillan. pp. 575-596.
  87. Minskaya, G. I. (1975). Developing the concept of number by means of the relationship of quantities, In L. P. Steffe (Ed.), Soviet studies in the psychology of learning and teaching mathematics. VII. Children's capacity for Learning Mathematics. 207-269. The University of Chicago.
  88. Moreno-Armella, L. E., & Waldeg, G. (2000), An epistemological history of numbers and variation. In V. J. Katz (Ed.), Using history to teach mathematics: an international perspective. The Mathematical Association of America. Toeplitz, O. (1963). The calculus
  89. NCTM(2000). Principles and Standards for school mathematics. Reston, VA: Author.
  90. Nelson, B. S. (1997). Learning about teacher change in the context of mathematics education reform: Where have we come from? In E. Fennema & B. S. Nelson(Eds.). Mathematics teachers in transition. pp. 3-15. Mahwah, NJ: Lawrence Erlbaum Associates.
  91. Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307-332. https://doi.org/10.3102/00346543062003307
  92. Patton, M. Q. (1990). Qualitative evaluation and research methods(2nd ed.). Newbury Park, CA: Sage.
  93. Piaget, J. (1969) The Child's Conception of Number. London : Routledge & Kegan Paul.
  94. Piaget, J. (1978). Success and understanding. Cambridge, MA : Harvard University Press.
  95. Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics beliefs and teaching practice. Jounal for Research in Mathematics Education. 28(5), 550-576. https://doi.org/10.2307/749691
  96. Raymond, A. M., & Santos, V. M. (1995). Preservice elementary teachers and self-reflectoin: How innovation in mathematics teacher preparation challenges mathematics beliefs. Jounal for Research in Mathematics Education. 46(1), 58-69.
  97. Rubin, Herbert & Rubin, Irene. (1995). Qualitative interviewing: The art of hearing data.Thousand Oaks, CA: Sage.
  98. Russell, B. (1919). Introduction to Mathematical Philosophy. 임정대(역) (1986). 수리철학의 기초. 서울: 연세대학교 출판부.
  99. Schwab, J. J. (1978), Education and the structure of the disciplines. In I. Westbury & Wilkof(Eds.), Science, curriculum, and liberal education (pp.229-272). Chicago: University of Chicago Press. (Original work published 1961).
  100. Shane, R. (2002). Context and content : what are student teachers learning about teaching mathematics? In S. Goodchild & English(Eds.), Researching mathematics classrooms (pp.119-153). Westport, CT: Greenwood Publishing Group.
  101. Shulman, L. S. (1986a). Paradigm and Research Programs in the Study of Teaching : A Contemporary Perspective. In M. C. Wittrick(Ed.). Handbook of Research on Teaching. New York: Macmillan.
  102. Shulman, L. S. (1986b). Those Who Understand : Knowledge Growth in Teaching. Educational Researcher. 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  103. Shulman, L. S. (1987). Knowledge and Teaching: Foundations of the New Reform. Harvard Educational Review. 57(1), 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  104. Skemp, R. R. (1976) Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
  105. Skemp, R. R. (1987). The Psychology of Learning Mathematics. (황우형 옮김). 2001. 수학학습 심리학. 서울 : (주)사이언스북스.
  106. Smith III, J. P. (1996). Efficacy and teaching mathematics by telling: A challenge for reform. Jounal for Research in Mathematics Education. 27(4), 387-402. https://doi.org/10.2307/749874
  107. Sundermann, B., und Selter, Ch. (2000). Halbschriftliches Rechnen auf eigenen Wegen, In Muller, G. H., & Wittmann, E. Ch. (Hrsg.), Mit Kindern rechnen(pp. 165-178). Frankfurt am Main: Arbeickreis Grundschule-Der Grundschulverband-e.V.
  108. Tamir, P. 1. (1987). Subject matter and related pedagogical knowledge in teacher education. Paper presented at the annual meeting of the American Association for Educational Research, Washington, DC.
  109. Thompson, A. (1984). The relationship of teachers' conceptions of mathematics and mathematics teaching to instructional practice. Educational Studies in Mathematics. 15, 105-127. https://doi.org/10.1007/BF00305892
  110. Thorndike, E. L. (1922). The Psychology of Arithmetic. The Macmillan Company.
  111. Treffers, R. (1991). Didactical background of a mathematics program for primary education. In L. Streefland (Ed.), Realistic mathematics education in primary school. (pp.21-57). Utrecht: CD $\beta$ Press.
  112. Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673-695. https://doi.org/10.1002/(SICI)1098-2736(199808)35:6<673::AID-TEA5>3.0.CO;2-J
  113. Wilson, S. M., Shulman, L. S., & Richert, A. E. (1987). 150 Different Ways of Knowing: Representations of Knowledge in Teaching. In J. Calderhead(Ed.), Exploring teachers' thinking. London : Cassell.