DOI QR코드

DOI QR Code

Visualization and Velocity Measurement of Migrating Cells in Microchannels with Various Width

다양한 크기의 마이크로 채널 내에서 이동하는 세포의 가시화 및 이동 속도 측정

  • 이승열 (한국산업기술대학교 기계공학과) ;
  • 김명준 (한국산업기술대학교 기계공학과) ;
  • 채상민 (한국산업기술대학교 기계공학과) ;
  • 진송완 (한국산업기술대학교 기계공학과)
  • Received : 2010.12.27
  • Accepted : 2011.02.18
  • Published : 2011.03.31

Abstract

In this paper, we applied various microfluidic chambers to visualize cell migration and measured the migration velocity in microchannels. Migration speed of B16 cell in a large channel was similar with that of wound healing experiment. However, the speed decreased gradually as the cell move inside of the channel. It is expected that this phenomenon is due to the shortage of oxygen or nutrition, whichare essential for cell growth. In the case of cell in the small channel whose size is smaller than the cell, its speed was slower than that in a larger channel.

Acknowledgement

Supported by : 한국연구재단

References

  1. Huttenlocher A., Horwitz A.F and Sandborg R. R., 1995, “Adhesion in Cell Migration”, Current Opinion in Cell Biology, Vol. 7(5), pp.697-706. https://doi.org/10.1016/0955-0674(95)80112-X
  2. Lauffenburger, D.A. and Horwitz, A.F., 1996, “Cell Migration: A Physically Integrated Molecular Process”, Cell, Vol. 84(3), pp. 359-369. https://doi.org/10.1016/S0092-8674(00)81280-5
  3. Yamaguchi, H., Condeelis, J and Wyckoff, J., 2005, “Cell Migration in Tumors”, Current Opinion in Cell Biology, Vol. 17(5), pp. 559-564. https://doi.org/10.1016/j.ceb.2005.08.002
  4. Saadoun, S., Hara-Chikuma, M., Papadopoulos, M. C and Verkman, A. S., 2005, “Impairment of Angiogenesis and Cell Migration by Targeted Aquaporin-1 Gene Disruption”, Nature, Vol. 434(7034), pp. 786-792. https://doi.org/10.1038/nature03460
  5. Auguste, K. I., Jin, S., Manley, G. T., Papadopoulos, M. C., Uchida, K., Verkman, A. S and Yan, D., 2007, “Greatly Impaired Migration of Implanted Aquaporin-4- Deficient Astroglial Cells in Mouse Brain toward a Site of Injury”, FASEB J., Vol. 21(1), pp. 108-116.
  6. Motegi, S-i., Buhring, H-J., Honma, N., Ishikawa, O., Ito, T., Kaneko, Y., Kobayashi, H., Matozaki, T., Ohnishi, H., Okazawa, H., Sato, R and Tomizawa, K., 2003, “Role of the CD47-SHPS-1 System in Regulation of Cell Migration”, EMBO J, Vol. 22(11), pp. 2634-2644. https://doi.org/10.1093/emboj/cdg278
  7. Jacob John, T. and Sieber Jr, O.F., 1976, “Chemotactic Migration of Neutrophils under Agarose”, Life Sciences, Vol. 18(2), pp. 177-181. https://doi.org/10.1016/0024-3205(76)90022-9
  8. Zigmond, S.H., 1977, “Ability of Polymorphonuclear Leukocytes to Orient in Gradients of Chemotactic Factors”, The Journal of Cell Biology, Vol. 75(2), pp. 606-616. https://doi.org/10.1083/jcb.75.2.606
  9. Zicha, D., Brown, A. F. and Dunn, G.A., 1991, “A new Direct-viewing Chemotaxis Chamber”, J Cell Sci, Vol. 99(4), pp. 769-775.
  10. Aznavoorian, S., Krutzsch, H., Liotta, L. A., Schiffmann, E. and Stracke, M.L., 1990, “Signal Transduction for Chemotaxis and Haptotaxis by Matrix Molecules in Tumor Cells”, The Journal of Cell Biology, Vol. 110(4), pp. 1427-1438. https://doi.org/10.1083/jcb.110.4.1427
  11. Hara-Chikuma, M and Verkman, A. S., 2006, “Aquaporin-1 Facilitates Epithelial Cell Migration in Kidney Proximal Tubule”, J Am Soc Nephrol, Vol. 17 (1), pp. 39-45.
  12. Flanagan, L. A., Jeon, N. L., Lee, A. P., Monuki, E. S., Rhee, S. W and Schwartz, P. H., 2005, “Human Neural Stem Cell Growth and Differentiation in a Gradient-generating Microfluidic Device”, Lab on a Chip, Vol. 5(4), pp. 401-406 https://doi.org/10.1039/b417651k
  13. Walker, G. M., Chung, C. Y., Richmond, A., Sai, J., Stremler, M and Wikswo, J. P., 2005, “Effects of Flow and Diffusion on Chemotaxis Studies in a Microfabricated Gradient Generator”, Lab on a Chip, Vol. 5(6), pp. 611-618. https://doi.org/10.1039/b417245k
  14. Saadi, W., Jeon, N., Lin, F and Wang, S-J., 2006, “A Parallel-gradient Microfluidic Chamber for Quantitative Analysis of Breast Cancer Cell Chemotaxis”, Biomedical Microdevices, Vol. 8(2), pp.109-118. https://doi.org/10.1007/s10544-006-7706-6
  15. Rao, S. M. N., Chiao, J. C., Hsieh, J-T., Lin, V. K., Nguyen, K., Raj, G. V and Tata, U., 2010, “Demonstration of Cancer Cell Migration Using a Novel Microfluidic Device”, Journal of Nanotechnology in Engineering and Medicine, Vol. 1 (2), pp. 021003-021006. https://doi.org/10.1115/1.4001280
  16. Agrawal, N., Mitchison, T and Toner, M., 2007, “Polar Stimulation and Constrained Cell Migration in Microfluidic Channels”, Lab on a Chip, Vol. 7(12), pp. 1783-1790. https://doi.org/10.1039/b710524j
  17. Liu, T., Li, C., Li, H., Lin, B., Qin, J and Zeng, S., 2009, “A Microfluidic Device for Characterizing the Invasion of Cancer Cells in 3-D Matrix”, Electrophoresis, Vol. 30(24), pp. 4285-4291. https://doi.org/10.1002/elps.200900289
  18. Ahn, G, S., 2010, A Study on the Effect of Scaffold Pore Architecture on Oxygen Diffusion, M.S. Thesis, Division of Mechanical and Industrial Engineering, Pohang University of Science and Technology, Pohang, Korea., pp. 13-22.
  19. Schneider, L., Cammer, M., Christensen, S. T., Guerra, C. F., Hoffmann, E. K., Lehman, J., Nielsen, S. K., Satir, P., Schwab, A., Stock, C., Veland, I. R and Yoder, B. K., 2010, “Directional Cell Migration and Chemotaxis in Wound Healing Response to PDGF-AA are Coordinated by the Primary Cilium in Fibroblasts,” Cellular Physiology and Biochemistry, Vol. 25(2-3), pp. 279-292. https://doi.org/10.1159/000276562
  20. Chung, S., Kamm, RD., Rimchala, T., Sudo, R and Zervantonakis, IK., 2009, “Surface-Treatment-Induced Three-Dimensional Capillary Morphogenesis in a Microfluidic Platform”, Advanced Materials, Vol. 21(47), pp. 4863-4867. https://doi.org/10.1002/adma.200901727