Influence of Inlet Secondary Curvature on Hemodynamics in Subject-Specific Model of Carotid Bifurcations

환자 특정 경동맥 분기부 모델 혈류유동에 대한 입구부 이차곡률의 영향

  • Lee, Sang-Wook (School of Mechanical Engineering, University of Ulsan)
  • 이상욱 (울산대학교 기계공학부)
  • Received : 2011.08.11
  • Accepted : 2011.10.07
  • Published : 2011.10.30


In image-based CFD modeling of carotid bifurcation hemodynamics, it is often not possible (or at least not convenient) to impose measured velocity profiles at the common carotid artery inlet. Instead, fully-developed velocity profiles are usually imposed based on measured flow rates. However, some studies reported a pronounced influence of inflow boundary conditions that were based on actual velocity profiles measured by magnetic resonance imaging which showing the unusual presence of a high velocity band in the middle of the vessel during early diastole inconsistent with a Dean-type velocity profile. We demonstrated that those velocity profiles were induced by the presence of modest secondary curvature of the inlet and set about to test whether such more "realistic" velocity profiles might indeed have a more pronounced influence on the carotid bifurcation hemodynamics. We found that inlet boundary condition with axisymmetric fully-developed velocity profile(Womersley flow) is reasonable as long as sufficient CCA inlet length of realistic geometry is applied.

의료영상을 기반으로 한 경동맥 분기부 혈류유동장 전산유체역학 해석의 수행에 있어 입구부 경계 조건 도출을 위한 환자 특정 시간 변동 상세 유속 분포를 얻는 것은 일반적으로 쉽지 않다. 그러므로 대부분의 경우 계측된 혈류량을 바탕으로 이상적인 축대칭 완전발달 유속 분포를 적용하게 된다. 그러나 MRI로 직접 계측한 총경동맥 혈류 유속분포를 적용한 기존의 연구에서 입구부 유속분포 경계 조건이 경동맥 분기부 혈류 유동장 해석 결과에 중요한 영향을 미친다는 것을 보였으며, 특히 계측된 혈류 유속분포가 전형적인 Dean type 유동과 다른 독특한 형태를 가진다는 것을 보고하였다. 본 연구에서는 이러한 독특한 형태의 유속 분포가 경동맥 입구부 형상의 이차곡률에 의해 생성됨을 보이고, 직접 경동맥 분기부 유동장 CFD 해석의 경계 조건으로 적용하여 이의 영향을 조사하였다. 이를 통하여 충분한 길이의 실제 경동맥 입구부 형상을 적용 할 경우, 입구부 경계 조건의 영향이 의료영상으로 부터 혈관 형상을 도출하는 과정에서 불가피하게 유기되는 영상 처리 오차에 의한 영향에 비해 상대적으로 크지 않음을 알 수 있었다.


Supported by : 한국학술진흥재단


  1. A. M. Malek and S. L. Alper, "Hemodynamic shear stress and its role in atherosclerosis," JAMA, Vol. 282, No. 21, pp. 2035-2042 (1999)
  2. D. N. Ku, D. P. Giddens, C. K. Zarins and S. Glagov, "Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress," Arteriosclerosis, Vol. 5, No. 3, pp. 293-302 (1985)
  3. C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon and S. Glagov, "Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress," Circulation Research, Vol. 53, No. 4, pp. 502-514 (1983)
  4. J. S. Milner, J. A. Moore, B. K. Rutt and D. A. Steinman, "Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects," Journal fo Vascular Surgery, Vol. 28, No. 1, pp. 143-156 (1998)
  5. Q. Long, X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes and A. V. Stanton, "Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study," Journal of Magnetic Resonance Imaging, Vol. 11, No. 3, pp. 299-311 (2000)<299::AID-JMRI9>3.0.CO;2-M
  6. D. A. Steinman, "Image-based computational fluid dynamics: a new paradigm for monitoring hemodynamics and atherosclerosis," Curr Drug Targets Cardiovasc Haematol Disord, Vol. 4, No. 2, pp. 183-197 (2004)
  7. I. Marshall, S. Zhao, P. Papathanasopoulou, P. Hoskins and Y. Xu, "MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models," Journal of Biomechanics, Vol. 37, No. 5, pp. 679-687 (2004)
  8. K. R. Moyle, L. Antiga and D. A. Steinman, "Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?," Journal of Biomechanical Engineerng, Vol. 128, No. 3, pp. 371-379 (2006)
  9. A. K. Wake, "Modeling fluid mechanics in individual human carotid arteries," PhD Thesis, Georgia Institute of Technology (2005)
  10. A. K. Wake, J. Oshinski, A. R. Tannenbaum and D. P. Giddens, "Choice of in vivo versus idealized velocity boundary conditions influences physiologically relevant flow patterns in a subject-specific simulation of flow in the human carotid bifurcation," Journal of Biomechanical Engineering, Vol. 131, No. 2, pp. 021013 (2009)
  11. J. G. Myers, J. A. Moore, M. Ojha, K. W. Johnston and C. R. Ethier, "Factors influencing blood flow patterns in the human right coronary artery," Annals of Biomedical Engineering, Vol. 29, No. 2, pp. 109-120 (2001)
  12. J. B. Thomas, J. S. Milner, B. K. Rutt and D. Steinman "Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation," Annals of Biomedical Engineering, Vol. 31, No. 2, pp. 132-141 (2003)
  13. C. Ethier, S. Prakash, D. Steinman, R. Leask, G. Couch and M. Ojha, "Steady flow separation patterns in a 45 degree junction," Journal of Fluid Mechanics, Vol. 411, pp. 1-38 (1999)
  14. P. Minev and C. Ethier, "A characteristic/finite element algorithm for the 3-D navier-stokes equations using unstructured grids," Comp. Meth. App. Mech. Eng., Vol. 178, No. 1-2, pp. 39-50 (1998)
  15. M. D. Ford, Y. J. Xie, B. A. Wasserman and D. A. Steinman, "Is flow in the common carotid artery fully-developed?," Physiological Measurement, Vol. 29, No. 11, pp. 1335-1349 (2008)
  16. L. Goubergrits, K. Affeld, J. Fernandez-Britto and L. Falcon, "Geometry of the human common carotid artery. A vessel cast study of 86 specimens," Pathology Research and Practice, Vol. 198, pp. 543-551 (2002)
  17. B. M. Johnston and P. R. Johnston, "The relative effects of arterial curvature and lumen diameter on wall shear stress distributions in human right coronary arteries," Physics in medicine and biology, Vol. 52, pp. 2531-2544 (2007)
  18. S.-W. Lee, L. Antiga and D. A. Steinman, "Correlations among indicators of disturbed flow at the normal carotid bifurcation," Journal of Biomechanical Engineering, Vol. 131, No. 6, pp. 061013 (2009)
  19. L. Antiga and D. A. Steinman, "Robust and objective decomposition and mapping of bifurcating vessels," IEEE Transaction of Medical Imaging, Vol. 23, pp. 704-713 (2004)