DOI QR코드

DOI QR Code

Recommendation using Service Ontology based Context Awareness Modeling

서비스 온톨로지 기반의 상황인식 모델링을 이용한 추천

  • 류중경 (대림대학 컴퓨터소프트웨어과) ;
  • 정경용 (상지대학교 컴퓨터정보공학부) ;
  • 김종훈 (가천의과학대학교 u헬스케어연구소) ;
  • 임기욱 (선문대학교 컴퓨터정보공학부) ;
  • 이정현 (인하대학교 컴퓨터정보공학부)
  • Received : 2010.07.12
  • Accepted : 2010.08.04
  • Published : 2011.02.28

Abstract

In the IT convergence environment changed with not only the quality but also the material abundance, it is the most crucial factor for the strategy of personalized recommendation services to investigate the context information. In this paper, we proposed the recommendation using the service ontology based context awareness modeling. The proposed method establishes a data acquisition model based on the OSGi framework and develops a context information model based on ontology in order to perform the device environment between different kinds of systems. In addition, the context information will be extracted and classified for implementing the recommendation system used for the context information model. This study develops the ontology based context awareness model using the context information and applies it to the recommendation of the collaborative filtering. The context awareness model reflects the information that selects services according to the context using the Naive Bayes classifier and provides it to users. To evaluate the performance of the proposed method, we conducted sample T-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.

Keywords

Ubiquitous Computing;Context Awareness;Recommendation;Service Ontology;OSGi;Naive Bayes

Acknowledgement

Supported by : 정보통신산업진흥원

References

  1. 김정기, 박승민, 장재우, “상황인식 처리 기술,” 정보처리학회논문지, 제10권, 제4호, pp.182-188, 2003.
  2. J. H. Kim, K. Y. Chung, J. K. Ryu, K. W. Rim, and J. H. Lee, "Personal History Based Recommendation Service System with Collaborative Filtering,“ Int. Conf. on Advanced Software Engineering & Its Application, IEEE Computer Society, pp.261-264, 2008.
  3. 김인태, 정경용, 임기욱, 이정현 "OSGi 기반 동적 RBAC 모델", 한국콘텐츠학회논문지, 제9권, 제1호, pp.53-60, 2009. https://doi.org/10.5392/JKCA.2009.9.1.053
  4. 정경용, "스마트 홈에서 상황인식 기반의 정보 필터링을 이용한 추천", 한국콘텐츠학회논문지, 제8권, 제7호, pp.17-25, 2008. https://doi.org/10.5392/JKCA.2008.8.7.017
  5. 윤세용, 최미진, 최성희, 한기태, 정경용, "상황인식을 이용한 맞춤형 패션 디자인 스타일 추천", 한국콘텐츠학회 춘계종합학술대회 발표논문집, pp.342-344, 2010.
  6. A. Schmidt, K. V. Laerhoven, “How to Build Smart Appliances,” IEEE Personal Communications, pp.676-71, 2001.
  7. M. Samulowitz, F. Michahelles, and C. Linnhoff-Popien, “Capeus: An Architecture for Context-Aware Selection and Execution of Services,” In New Developments in Distributed Applications and Interoperable Systems, Kluwer Academic Publishers, pp.22-23, 2001.
  8. Q. Z. Sheng, B. Benatallah, “ContextUML: A UML-Based Modeling Language for Model-Driven Development of Context-Aware Web Services,” Proc. of the Int. Conf. on Mobile Business, pp.206-212, 2005. https://doi.org/10.1109/ICMB.2005.33
  9. 송창우, 김종훈, 정경용, 임기욱, 이정현, "OSGi 기반 시맨틱 사용자 프로파일 관리자", 한국콘텐츠학회논문지, 제8권, 제8호, pp.9-18, 2008.
  10. OSGi Alliance, About the OSGi Service Platform, Technical Whitepaper Revision 4.1, 2005.
  11. 백순근, 교육연구 및 통계분석, 교육과학사, 2007.
  12. P. Dobrev, D. Famolari, C. Kurzke and B. A. Miller, “Device and Service Discovery in Home Networks with OSGi,” IEEE Communications Magazine, Vol. 40, Issue 8, pp.86-92, 2002. https://doi.org/10.1109/MCOM.2002.1024420
  13. (주)한백전자, http://www.hanback.co.kr/.
  14. 정경용, "유전자 알고리즘을 이용한 감성공학적 의상 코디 지원 방법", 한국콘텐츠학회논문지, 제8권, 제5호, pp.38-43, 2008(5). https://doi.org/10.5392/JKCA.2008.8.5.038
  15. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, "Evaluating Collaborative Filtering Recommender Systems," ACM Trans. on Infor. Sys. Vol. 22, No. 1, pp.5-53, 2004. https://doi.org/10.1145/963770.963772
  16. 김종훈. U-헬스케어 개인화 서비스를 위한 상황정보 기반의 아이템 추천 기법, 인하대학교 컴퓨터정보공학부 박사학위논문, 2010(8).