Preparation and Characterization of Ion-exchange Membrane Using sPEEK for Fuel Cell Application

Sulfonated-PEEK를 이용한 연료전지용 이온교환막의 제조 및 특성평가

  • Jang, Won-Gi (Department of Chemical System Engineering, Keimyung University) ;
  • Ye, Se-Hui (Department of Chemical System Engineering, Keimyung University) ;
  • Kang, Seung-Kyu (Department of Transportation Engineering, Keimyung University) ;
  • Kim, Ji-Tae (Department of Environmental and Energy Systems Engineering, Kyonggi University) ;
  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University)
  • 장원기 (계명대학교 화학시스템공학과) ;
  • 예세희 (계명대학교 화학시스템공학과) ;
  • 강승규 (계명대학교 교통공학과) ;
  • 김지태 (경기대학교 환경에너지시스템공학과) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2011.09.06
  • Accepted : 2011.09.26
  • Published : 2011.09.30

Abstract

A nascent membrane was prepared by using the solution evaporation method with a solution of sPEEK, EdAn (cross-linking reagent), and PEA (grafting reagent) in DMAc. Then, after the imination and sulfonation process the cross-linked and grafted ion-exchange membrane, CG-sPEEK, was obtained. The sulfonation and imination reactions were confirmed by FTIR analysis. In order to evaluate the possibility of prepared membrane for the use of an ion-exchange membrane in PEMFC, proton conductivity, water uptake and volume change were measured and compared with a commercial membrane, Nafion 115. It was revealed that since the proton conductivity (0.17 S/cm) of prepared membrane were much higher than those of Nafion 115 (0.10 S/cm) the prepared membrane could be used for the ion-exchange membrane in PEMFC. However, the high water uptake (130%) of CG-sPEEK should be reduced for the dimension stability.

Acknowledgement

Supported by : 지식경제부

References

  1. K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renewable Energy, 31, 719 (2006). https://doi.org/10.1016/j.renene.2005.09.003
  2. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", J. Membr. Sci., 173, 17 (2000). https://doi.org/10.1016/S0376-7388(00)00345-8
  3. R. K. Ahluwalia, X. Wang, A. Rousseau, and R. Kumar, "Fuel economy of hydrogen fuel cell vehicles", J. Power Sources, 130, 192 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.061
  4. S. H. Jeon, B. J. Chang, H. C. Kang, J. H. Kim, and H. J. Joo, "Effect of brandching- agent content on the electrochemical properties of partially fluorinated poly(arylene ether sulfone) block ionomer membranes", Membrane Journal, 21, 1 (2011).
  5. P. Costamagna and S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects", J. Power Sources, 102, 242 (2002).
  6. P. Staiti, F. Lufrano, F. Lufrano, A. S. Aricò, E. Passalacqua, and V. Antonucci, "Sulfonated polybenzimidazole membranes - preparation and physic chemical characterization", J. Membr. Sci., 188, 71 (2001). https://doi.org/10.1016/S0376-7388(01)00359-3
  7. M. Rikukawa and K. Sanui, "Proton- conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 1463 (2000). https://doi.org/10.1016/S0079-6700(00)00032-0
  8. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approcaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100${^{\circ}C}$", Chem. Mater, 15, 4896 (2003). https://doi.org/10.1021/cm0310519
  9. K. Lunkwitz, U. Lappan, and U. Scheler, "Modification of perfluorinated polymers by high- energy irradiation", J. Fluor. Chem., 125, 863 (2004). https://doi.org/10.1016/j.jfluchem.2004.01.020
  10. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochimia Acta, 46, 2401 (2001). https://doi.org/10.1016/S0013-4686(01)00437-6
  11. A. H. C. Sirk, J. M. Hill, S. K. Y. Kung, and V. I. Birss, "Effect of Redox State of PtRu Electrocatalysts on Methanol Oxidation Activity", J. Phys. Chem. B., 108, 689 (2004). https://doi.org/10.1021/jp036602x
  12. S. Haufe and U. Stimming, "Proton conducting membranes based on electrolyte filled microporous matrices", J. Membr. Sci., 185, 95 (2001). https://doi.org/10.1016/S0376-7388(00)00637-2
  13. K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and Characteristics of Partially Covalent- crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell", Membrane Journal, 18, 261 (2008).
  14. H. Dogan, T. T. Inan, E. Unveren, and M. Kaya, "Effect of cesium salt of tungstophosphoric acid (Cs- TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications", International Journal of Hydrogen Energy. 25, 7784 (2010).
  15. H. Y. Lee, H. K. Hwang, S. S. Park, S. W. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyeher sulfone membrane for PEMFC", Membrane Journal, 20, 40 (2010).
  16. N. Kim, "Preparation and Characteristics of Polyethersulfone Microfiltration Membrane", Membrane Journal, 17, 329 (2007).
  17. D. H. Lee, R. H. Crabtree, and S. K. Park, "Imination catalysis via two- point binding of substrate aldehyde via a metal and a pendant hydrogen- bonding group", Korean Chem. Soc., 23, 1157 (2002). https://doi.org/10.5012/bkcs.2002.23.8.1157